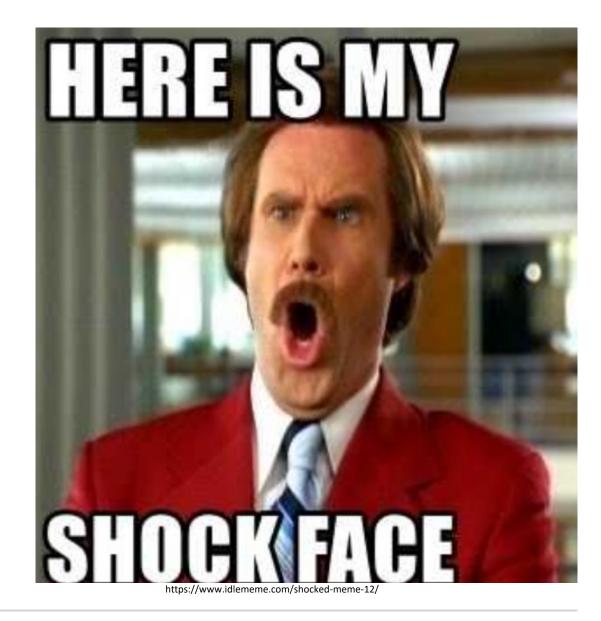

Shock Talk: Recognition, Classification, and Treatment of Shock

Joseph Polit, DVM Emergency & Critical Care Resident Cape Cod Vet Specialists



Cape cod vet Specialists

Outline

- What is shock
- Classifications of shock
- Pathophysiology of shock
- Conditions with shock
- Clinical signs of shock
- Diagnostics
- Monitoring
- Treatment

Objectives

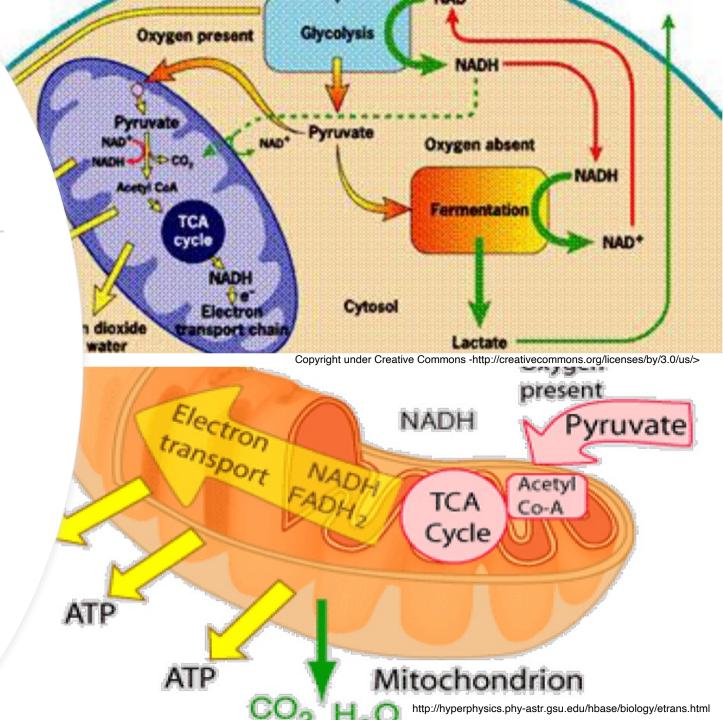
- Define shock
- Understand the different classifications of shock
- Be able to identify shock
- Be able to treat shock efficiently and appropriately

https://www.istockphoto.com/photo/bullseye-on-yellow-background-gm1208854512-349582994

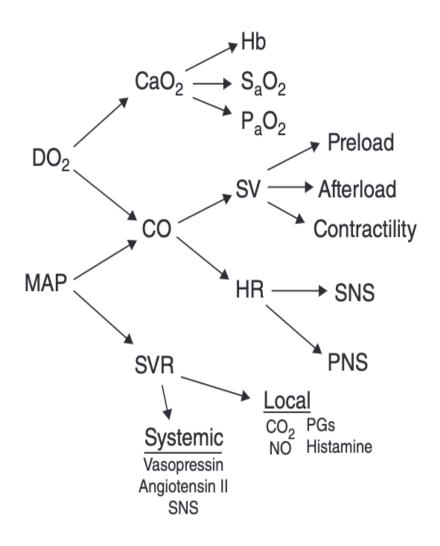
https://www.cliniciansbrief.com/article/treating-septic-shock

What is shock

Why Do We Care?

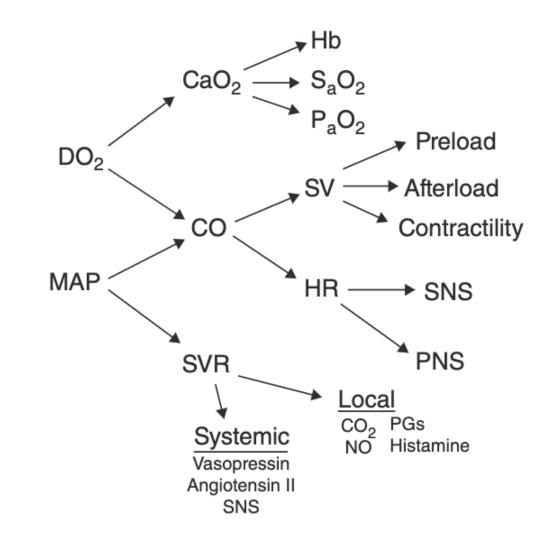

- Shock plays a role in fatal illnesses and is part of the final common pathway of cardiopulmonary arrest.
- Early recognition and appropriate treatment of shock can reverse the sequelae of shock and improve outcomes

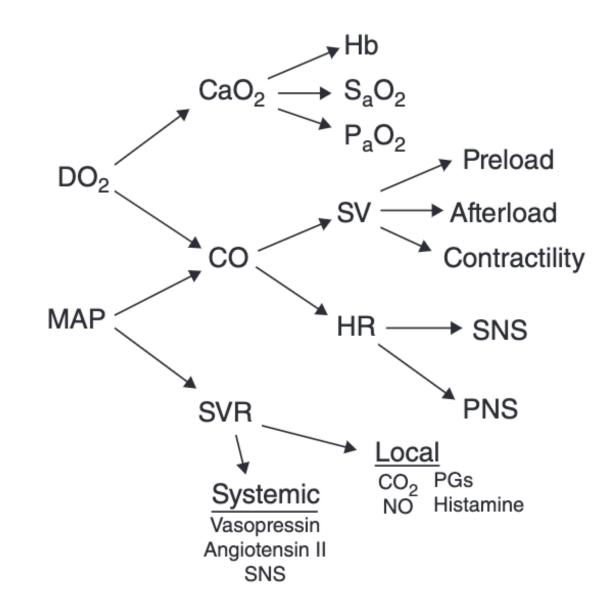
Time to Treatment and Mortality during Mandated Emergency Care for Sepsis


Christopher W. Seymour, M.D., Foster Gesten, M.D., Hallie C. Prescott, M.D., Marcus E. Friedrich, M.D., Theodore J. Iwashyna, M.D., Ph.D., Gary S. Phillips, M.A.S., Stanley Lemeshow, Ph.D., Tiffany Osborn, M.D., M.P.H., Kathleen M. Terry, Ph.D., and Mitchell M. Levy, M.D.

What Is Shock ?

- Inadequate cellular energy production
- Oxygen or glucose
- Usually due to inadequate oxygen delivery


Delivery of Oxygen


DO2= CO x CaO2 DO2=(HR x SV) x [(1.34 x Hb x SaO2) + (PaO2 x 0.003)]

Defects of Oxygen Delivery

DO2= CO x CaO2

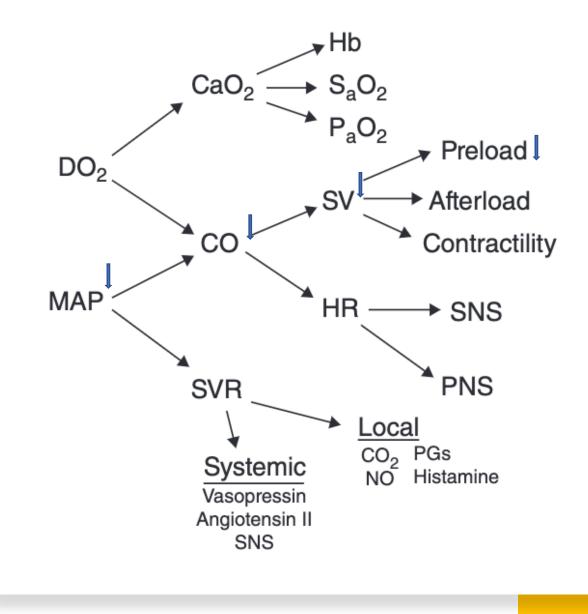
Why Does Shock Occur?

Hypovolemic

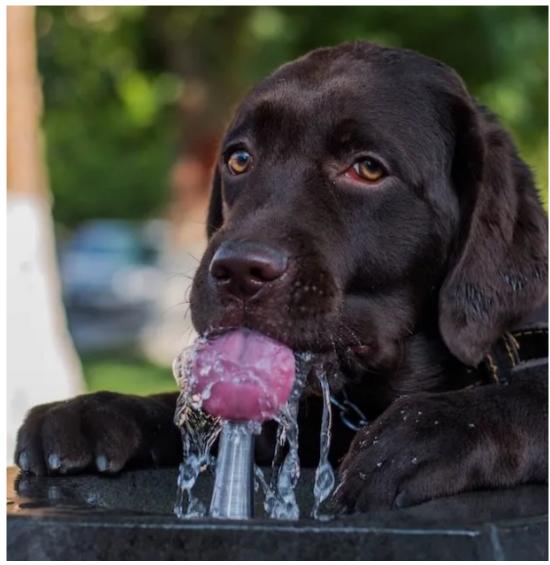
Distributive

Cardiogenic

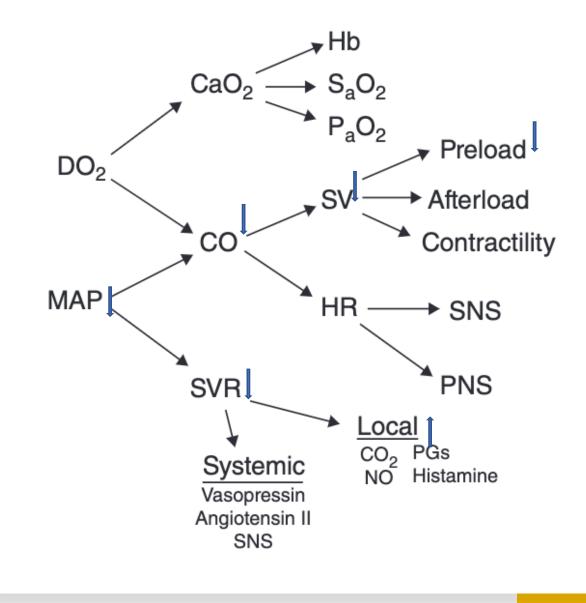
Neurogenic


Hypoxemic

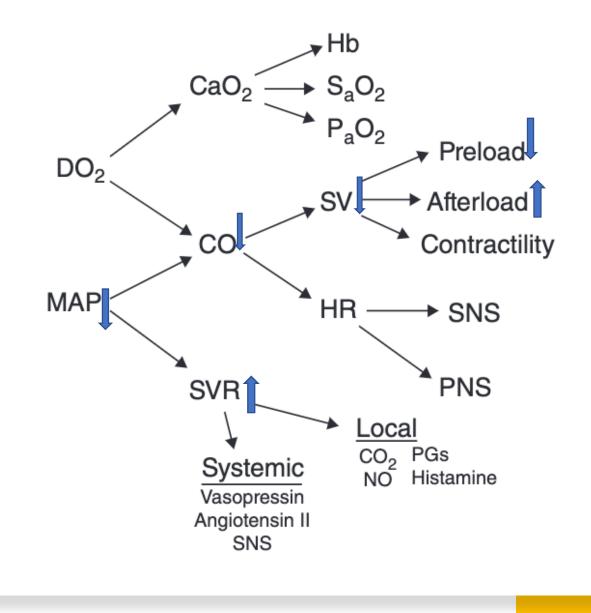
Metabolic


https://www.dvm360.com/view/recognizing-and-treating-shock-cats

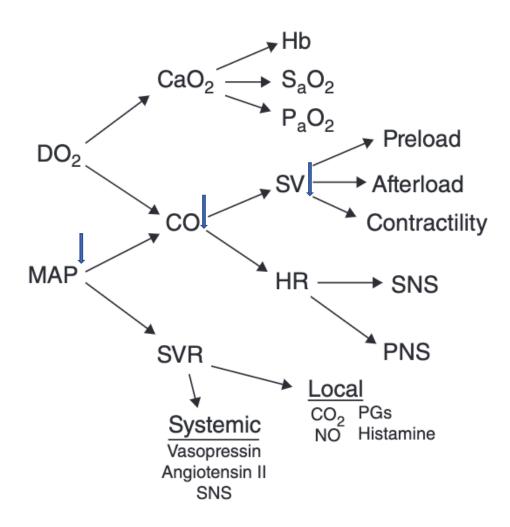
- Hypovolemic shock
 - The most common cause of shock in veterinary patients
 - Hemorrhagic; blood loss
 - Non hemorrhagic; severe burns, diarrhea, third spacing, dehydration
 - May overlap with other classifications of shock

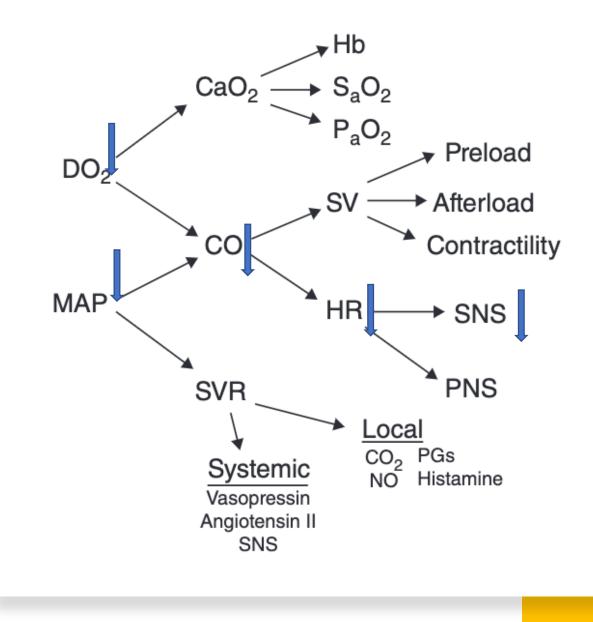

Dehydration **** Hypovolemia

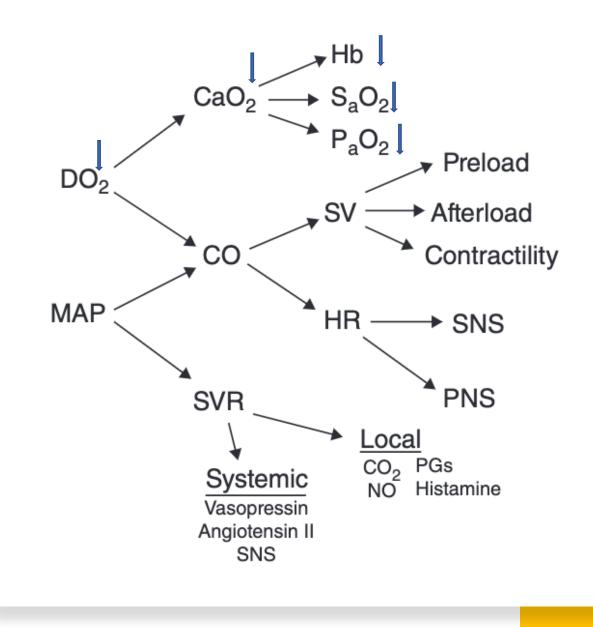
- Dehydration is a decrease in interstitial and intracellular fluid compartments
- Hypovolemia is a decrease in intravascular volume
- Hemoconcentration is an increase in the relative number of red blood cells

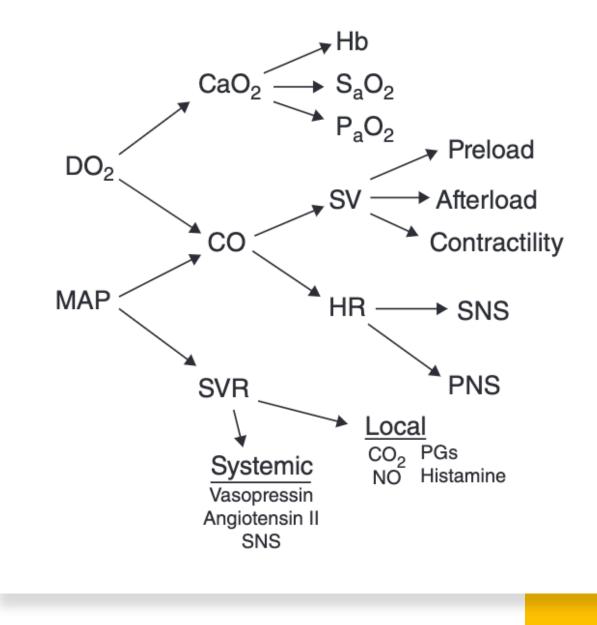


https://dogfriendlymcr.com/how-to-get-your-dog-to-drink-water-in-4-steps/


- Distributive shock
 - Often a result of inappropriate vasodilation resulting in decreased venous flow
 - Reduction in blood flow limits oxygen delivery to the tissues and results in a tissue oxygen debt
 - Sepsis, obstruction (HWdz, thrombus, GDV), anaphylaxis


- Obstructive Shock
 - Heart can pump well, but the output is decreased due to an obstruction
 - GDV, tension pneumothorax, pericardial tamponade, high end positive pressure ventilation


- Cardiogenic shock
 - primarily a disorder of cardiac function in the form of a critical reduction of the heart's pumping capacity
 - Systolic failure; CHF, DCM, arrythmias, drugs, ischemia
 - Diastolic failure; HCM, RCM, tamponade,


- Neurogenic shock
 - Direct injury to the centers for circulatory regulation
 - Altered afferents to the circulatory center
 - Interruption of the descending connection to the spinal cord,

- Hypoxemic shock
 - Decrease in oxygen content in arterial blood
 - Anemia, severe pulmonary disease
 - CO toxicity, methemoglobinemia

- Metabolic shock
 - Have adequate circulation and arterial oxygen content,
 - Inadequate energy substrate, or energy generating capability
 - Hypoglycemia, cyanide toxicity, mitochondrial dysfunction, cytopathic hypoxia

Case 1

- 10 year old male neutered golden presented for lethargy and collapse. On presentation patient is quiet and tachypneic. Initial physical exam revealed pale mucus membranes, CRT >2, HR of 160, with a palpable fluid wave. The patient also has normal to cool limbs, normal to weak pulses with a blood pressure of 70. You place a catheter and are only able to obtain a pcv/ts; 20/4.
- How would you classify this patient?

Case 2

- 3 year old male neutered golden presented with a one week history of vomiting, anorexia and lethargy. Over the last 12 hours the patients lethargy has progressed. On presentation the patient is dull to obtunded. Temp 104, HR 160, panting, CRT <1, Hyperemic MM, with warm limbs but weak pulses. Patient has abdominal discomfort. Blood pressure of 50.
- How would you classify this patient?

https://www.cliniciansbrief.com/article/quiz-mucous-membrane-evaluation-dogs

https://todaysveterinarynurse.com/emergency-medicine-critical-care/shock-an-overview/

Case 3

 8 year old male neutered Cavalier presented for hyporexia, and progressive tachypnea. On presentation the patient was anxious, RR 60, HR 150, and cyanotic mucus membranes. Physical exam revealed bilateral crackles, fair to weak pulses and a grade 4/6 murmur. Unable to obtain blood pressure because patient was in distress

• How would you classify this patient?

https://heartsmart.vet.tufts.edu/difficulty-breathing-dyspnea/

Pathophysiology of Shock

https://rhodes2safety.com/canine-tip-of-the-day-shock/

Compensation of Shock

- Increase in sympathetic activity and decrease in parasympathetic activity
 - Constriction of arterioles leading to an increase in systemic vascular resistance
 - Constriction of large capacitance venules and veins
 - Marked increase in heart rate

Compensated

- Decreased venous return
 - Decreased stroke volume
 - Decreased aortic and carotid arterial wall stretch
- Increased sympathetic nervous system tone
 - Increased cardiac inotropy, chronotropy, lusitropy
 - Release of catecholamines from adrenal medulla
 - Peripheral arteriolar vasoconstriction
 - Cerebral and coronary arteriolar vasodilation
 - Venoconstriction
 - Splenic contraction
- Supply-dependent oxygen consumption
 - Hyperlactatemia
 - Increased cellular hydrogen ion production
 - · Peripheral chemoreceptor stimulation
 - Local arteriolar vasoconstriction
 - Increased ventilatory drive
- Stimulation of renin-angiotensin-aldosterone system
 - Increased angiotensin II
 - Peripheral vasoconstriction
 - Maintenance of glomerular filtration rate
- Increased aldosterone
- Increased renal sodium reabsorption
- Increased antidiuretic hormone
 - Peripheral vasoconstriction
 - Increased renal water reabsorption
 - Increased thirst
- Decreased intravascular hydrostatic pressure
 - · Fluid movement from interstitial space

Compensation of Shock Con't

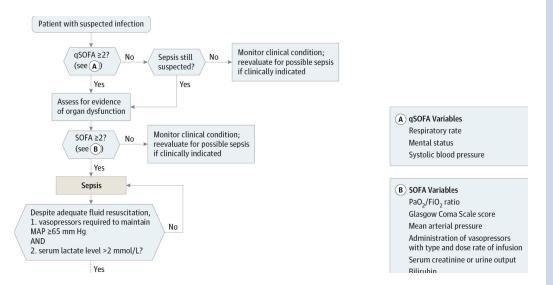
- Maintain vital organs with adequate oxygen
 - Maintaining mean circulatory pressures
 - Maximize cardiac performance
 - Redistribute perfusion
 - Optimize oxygen unloading

Conditions With Shock

https://wagwalking.com/treatment/heatstroke-treatments

Systemic Inflammatory Response

TABLE 6.10 SIRS Criteria for Dogs, Cats, and People


Modified from Silverstein DS, Otto CM: Sepsis. In Greene CE, editor: *Infectious diseases of the dog and cat*, ed 4, St Louis, 2012, Elsevier.

SIRS CRITERIA	CATS	DOGS	PEOPLE
Temperature	<37.8°C, >40.0°C	>39.2°C, <37.2°C	>38.0°C, <36.0°C
	>103.5°F, <100°F	>102.6°F, <99°F	>100.4°F, <96.8°F
Heart rate	>225, <140 beats/min	>140	>90
Respiratory rate	>40 breaths/min	>30	>20
White blood cell count	>19,500 <5000	>19,000 <6000	>12,000 <4000

- Systemic Inflammatory Response Syndrome (SIRS)
 - A widespread systemic response to an infectious or non-infectious insult
 - Imbalance between pro and anti inflammatory mediators
- Criteria for diagnosis
 - Abnormal temperature (fever or hypothermia)
 - Abnormal heart rate (tachycardia or bradycardia)
 - Tachypnea
 - Leukocytosis or leukopenia

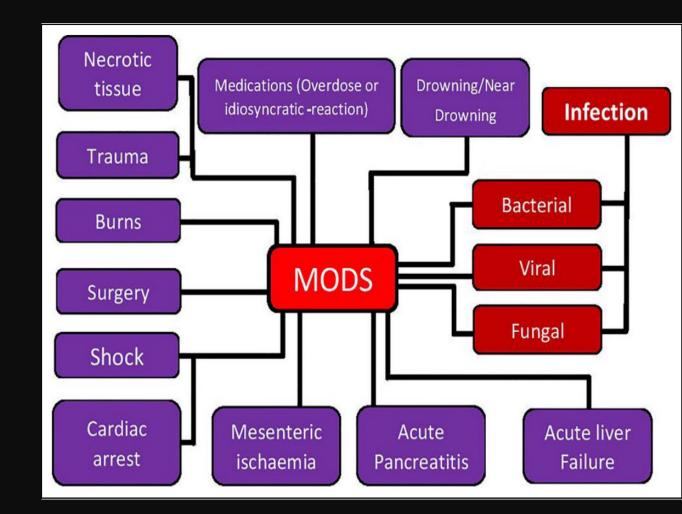
Sepsis

- Sepsis
 - Clinical syndrome of systemic inflammation in response to an infection
- Septic shock
 - Acute circulatory failure and persistent arterial hypotension, despite adequate volume resuscitation

System	Score						
	0	1	2	3	4		
Respiration							
Pao ₂ /Fio ₂ , mm Hg (kPa)	≥400 (53.3)	<400 (53.3)	<300 (40)	<200 (26.7) with respiratory support	<100 (13.3) with respiratory suppor		
Coagulation							
Platelets, ×10 ³ /µL	≥150	<150	<100	<50	<20		
Liver							
Bilirubin, mg/dL (µmol/L)	<1.2 (20)	1.2-1.9 (20-32)	2.0-5.9 (33-101)	6.0-11.9 (102-204)	>12.0 (204)		
Cardiovascular	MAP ≥70 mm Hg	MAP <70 mm Hg	Dopamine <5 or dobutamine (any dose) ^b	Dopamine 5.1-15 or epinephrine ≤ 0.1 or norepinephrine $\leq 0.1^{b}$	Dopamine >15 or epinephrine >0.1 or norepinephrine		
Central nervous system							
Glasgow Coma Scale score ^c	15	13-14	10-12	6-9	<6		
Renal							
Creatinine, mg/dL (µmol/L)	<1.2 (110)	1.2-1.9 (110-170)	2.0-3.4 (171-299)	3.5-4.9 (300-440)	>5.0 (440)		
Urine output, mL/d				<500	<200		

Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi:10.1001/jama.2016.0287

Site	Disease Examples	Dogs (%)	Cats (%)	Pathogens
Peritoneal cavity	GI perforation	35%-36% ^{2,4,8}	47% ¹⁰	Coagulase-negative <i>Staphylococcus</i> spp, <i>Enterococcus</i> spp, B-hemolytic <i>Streptococcus</i> spp, <i>Escherichia coli,</i> <i>Klebsiella</i> spp, <i>Enterobacter</i> spp, <i>Pasteurella</i> spp, <i>Corynebacterium</i> spp ^{4,40,42,43}
Pulmonary parenchymal, pleural	Pneumonia	20% ^{4,41}	24% (pyothorax) + 14% (pneumonia) ²¹	B-hemolytic Streptococcus spp, E. coli, Bordetella bronchiseptica, Staphylococcu spp, E. coli, Klebsiella spp, Pseudomona spp, Enterococcus faecalis, Acinetobacte spp, Pasteurella spp ^{4,44}
Gastrointestinal	Enteritis, bacterial translocation	4%	5% ²¹	E. coli ²¹
Reproductive	Pyometra Prostatitis	25% ^{4,6}		Group G Streptococcus spp, Enterococcus spp, B-hemolytic Streptococcus spp, E. coli, Klebsiella spp ⁴
Urinary tract	Pyelonephritis Bacterial cystitis	4%-10%4	8%, ²² 7% ²¹	B-hemolytic <i>Streptococcus</i> spp, <i>E. coli,</i> <i>Acinetobacter</i> spp, <i>Enterococcus</i> spp ^{4,22}
Soft tissue, bone	Trauma, osteomyelitis, bite wounds	29%	16%, ²² 3% (osteomyelitis) + 3% (bite wounds ²¹ ; 3%-50% ^{6,21,22}	<i>E. coli, Enterobacter</i> spp ⁴
Cardiovascular	Endocarditis		14% ²¹	Staphylococcus lugdunensis, Bartonella sp S. aureus, E. faecalis, Granulicatella spp Streptococcus spp, Brucella spp ⁴⁵

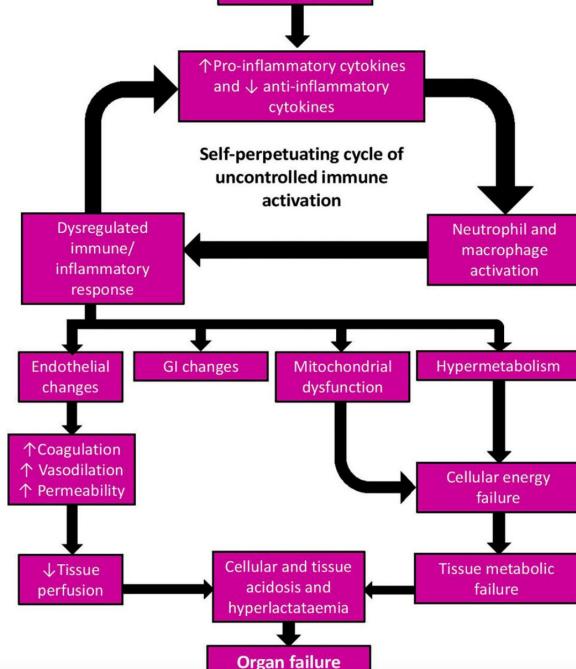

Table 91-4 Septic Foci in Cats and Dogs and Pathogens Involved^{4,19,21,22,40-45,89-92}

Sepsis Con't

Modified from Silverstein DS, Otto CM: Sepsis. In Greene CE, editor: *Infectious diseases of the dog and cat*, ed 4, St Louis, 2012, Elsevier.

Multiple Organ System Dysfunction Syndrome

- The acute and potentially reversible dysfunction of 2 or more organ systems that is triggered by multiple different and clinically diverse factors
- Diversity of triggers
- Infectious and noninfectious


Gourd, Nicholas M.; Nikitas, Nikitas (2019). Multiple Organ Dysfunction Syndrome. Journal of Intensive Care Medicine, (), 088506661987145–. doi:10.1177/0885066619871452

Immune priming

Multiple Organ System Dysfunction Syndrome Con't

Gourd, Nicholas M.; Nikitas, Nikitas (2019). Multiple Organ Dysfunction Syndrome. Journal of Intensive Care Medicine, (), 0885

- Dysregulated disproportional activation of neutrophils and macrophages
- Mitochondrial changes
- Endothelial changes
- Epithelial changes
- Coagulation changes
- Neuroendocrine changes

619871452

Multiple Organ Dysfunction Syndrome Con't

- Multiple Organ Dysfunction Syndrome
 - Renal dysfunction (rise in [Creatinine] > 0.5mg/dL)
 - Cardiovascular dysfunction (myocardial dysfunction or requirement for pressors)
 - Respiratory dysfunction (requirement of oxygen or mechanical ventilation)
 - Hepatic dysfunction (T. bili >0.5mg/dL)
 - Coagulation dysfunction, DIC (thrombocytopenia, prolonged PT, PTT, etc.)
 - Gastrointestinal dysfunction (vomiting, regurgitation, ileus, constipation, diarrhea)
 - Endothelial dysfunction (vascular leak with edema formation and low albumin)

Additional conditions to Shock

- Coagulopathy
- Mitochondrial dysfunction
- Microcirculatory dysfunction

Clinical Signs of Shock

Identifying Shock

Physical exam is going to be your most important tool!

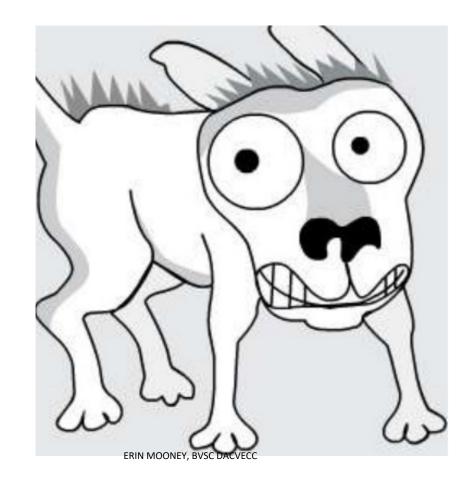
- Perfusion parameters
 - MM color
 - Capillary refill time
 - Heart rate
 - Pulse quality
 - Temperature
 - Mentation
 - Blood pressure

Clinical Signs of Shock

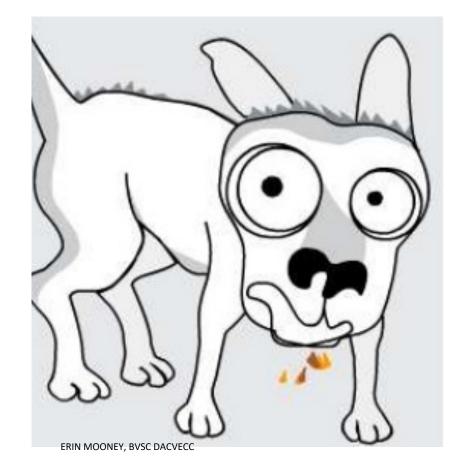
- physical exam findings associated with shock:
 - Tachycardia
 - Tachypnea
 - Pale mucus membranes (MM) with delayed capillary refill time (CRT)
 - Brick red MM with brisk CRT (e.g. < 1 second) in early septic shock
 - Cool limbs
 - Weak arterial pulses (sometimes bounding in early septic shock)
 - Reduced level of consciousness
 - Hypotension
 - Fever or hypothermia

https://www.memphisveterinaryspecialists.com/site/blog-cordova/2020/08/14/dehydration-in-dogs-causes-symptoms-treatment to the second state of t

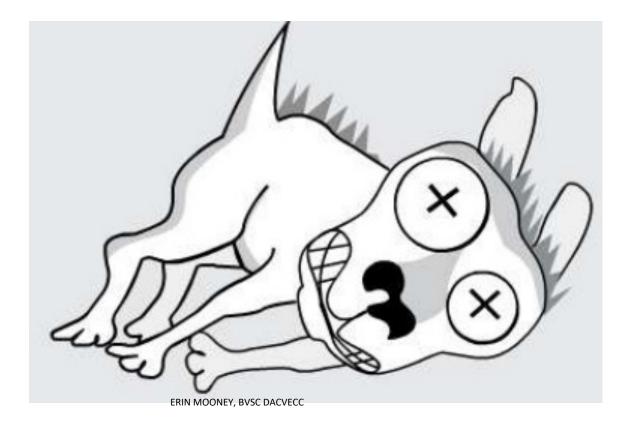
Sepsis



T Hypovolaemia


Phases of Shock

- Compensatory phase
 - Mildly increased HR, RR
 - Normal pulse quality
 - Normal –increased pulse pressure
 - Hyperemic MM, CRT <1
 - Mildly depressed mentation
 - Normal temperature
 - Normal blood pressure
 - Normal urine output


Phases of Shock Con't

- Early decompensated
 - Tachycardia
 - Tachypnea
 - Weak pulse quality, cool limbs
 - Normal to decreased pulse pressure
 - Pale MM, CRT >2 sec
 - Depressed to obtunded mentation
 - Hypothermia
 - Hypotension
 - Hyperglycemia
 - Petechiae, Ecchymosis

Phases of Shock Con't

- Late decompensated
 - Tachycardia/bradycardia
 - Tachypnea/hypopnea
 - Weak or absent pulses
 - Pale to cyanotic MM, absent CRT
 - Comatose mentation
 - Severely hypothermic
 - Severely hypotensive
 - Normal to decreased glucose

	COMPENSATORY	EARLY DECOMPENSATORY	LATE DECOMPENSATORY
Heart rate	Mildly increased	Tachycardia	Tachycardia/bradycardia
Respiratory rate	Mildly increased	Tachypnea	Tachypnea/hypopnea
Pulse quality	Normal	Weak	Weak or absent
Pulse pressure	Normal to increased	Normal to decreased	Decreased
Mucous membrane color	Hyperemic	Pale	Pale or cyanotic
Capillary refill time	<1s	>2s	Absent
Mentation	Mildly depressed	Depressed to obtunded	Stuporous or comatose
Temperature	Normal	Hypothermic	Severely hypothermic
Arterial pressure	Normal	Hypotensive	Severely hypotensive
Glucose	Increased	Increased	Normal or decreased

Modified from Silverstein DS, Otto CM: Sepsis. In Greene CE, editor: *Infectious diseases of the dog and cat*, ed 4. St Louis, 2012, Elsevier.

Case 1

 10 year old male neutered golden presented for lethargy and collapse. On presentation patient is quiet and tachypneic. Initial physical exam revealed pale mucus membranes, CRT >2, HR of 160, with a palpable fluid wave. The patient also has normal to cool limbs, normal to weak pulses with a blood pressure of 70. You place a catheter and are only able to obtain a pcv/ts; 20/4.

• Which stage of shock is this patient in

https://www.ndsr.co.uk/veterinary-professionals/insight/news-81-spontaneous-non-traumatic-haemoabdomen-in-the-dog

Case 2

- 3 year old male neutered golden presented with a one week history of vomiting, anorexia and lethargy. Over the last 12 hours the patients lethargy has progressed. On presentation the patient is dull to obtunded. Temp 104, HR 160, panting, CRT <1, Hyperemic MM, with warm limbs but weak pulses. Patient has abdominal discomfort. Blood pressure of 50.
- Which stage of shock is this patient in

https://www.cliniciansbrief.com/article/quiz-mucous-membrane-evaluation-dogs

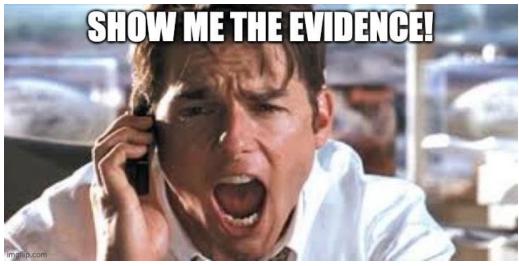
https://todaysveterinarynurse.com/emergency-medicine-critical-care/shock-an-overview/

Case 3

 8 year old male neutered Cavalier presented for hyporexia, and progressive tachypnea. On presentation the patient was anxious, RR 60, HR 150, and cyanotic mucus membranes. Physical exam revealed bilateral crackles, fair to weak pulses and a grade 4/6 murmur. Unable to obtain blood pressure because patient was in distress

• Which stage of shock is this patient in

https://heartsmart.vet.tufts.edu/difficulty-breathing-dyspnea/


Clinical Signs of Cardiogenic Shock

- Clinical signs associated with cardiogenic shock can
 - Cyanosis
 - Respiratory distress
 - Pulmonary crackles
 - Tachycardia
 - A cardiac murmur or gallop
 - Cardiac arrhythmias
 - weakness
 - Distended jugular veins and elevated CVP and/or pulmonary edema

Emergent Diagnostic Evidence of Shock

- PCV/TS; anemic
- Hyperlactemia; marker of tissue perfusion
- Metabolic acidosis
 - Base excess
 - Decreased HCO3
- Urine specific gravity; renal function
- Blood pressure; hypotension
- PT/PTT; Coagulopathy can lead to disseminated intravascular coagulation (DIC) or organ thrombosis

https://www.psnetwork.org/14-show-me-the-evidence/

Emergent Diagnostic Evidence of Shock Con't

- Shock Index
 - Heart rate divided by blood pressure
 - Allows quantification on severity of shock
 - Allows identification of derangements in perfusion status in the face of normal cardiovascular parameters
 - Shock index > 0.9 correlates with a higher mortality

https://www.linkedin.com/pulse/shock-index-veterinary-patients-shailen-jasani

Evaluation of the shock index in dogs presenting as emergencies

Adam E. Porter, DVM, <u>Elizabeth A. Rozanski</u>, DVM, DACVIM, DACVECC, <u>Claire R. Sharp</u>, BVMS, MS, DACVECC, <u>Kursten L. Dixon</u>, BS, CVT, <u>Lori Lyn Price</u>, MAS, and <u>Scott P. Shaw</u>, DVM, DACVECC

Diagnostics

https://mindd.org/functional-diagnostics-functional-medicine/

Diagnostics

- Initial diagnostics
 - Blood pressure
 - Lactate
 - Electrolytes
 - Blood glucose
 - Pulse ox
 - EKG
 - Heart rate
 - Respiratory rate
 - Temperature
 - Shock Index

- Complete diagnostics
 - CBC
 - CHEM
 - Arterial blood gas
 - Coags
 - Blood type
 - Urine analysis
 - Thoracic/abdominal radiographs
 - Abdominal ultrasound
 - Echocardiogram

Monitoring

- Tissue perfusion and oxygen delivery
 - Central venous pressure
 - Normal 0-5cm H2O
 - Mean arterial pressure
 - Normal 70-120mmhg
 - Urine production
 - 1ml/kg/hr

Monitoring Con't

- Lactate
 - Measure of hypoperfusion and a product of anaerobic metabolism
 - Normal in adult dogs and cats is less than 2mmol/L
 - Used as a prognostic indicator and a guide for resuscitation
 - Should decrease by half every 1-2 hours

Туре А		Туре В					
Relative	Absolute	B1: Disease	B2: Drugs/Toxins	B3: Congenital			
Exercise ^{§,+} Muscle tremors [§] Shivering [§] Seizures [§] Struggling ^{§,+}	Hypoperfusion ^{§,+} Severe anemia [§] Severe hypoxemia [§] Carbon monoxide [§]	Malignancy ^{$\infty, B, *$} Diabetes mellitus ^{$\infty, B, *$} Hepatic failure ^{∞, B} Thiamine deficiency ^{$B, 1$} Hyperthyroidism ^{∞, B} Microcirculatory dysfunction [§] Cytopathic hypoxia ^{$\infty, B, +$} Impaired gluconeogenesis [•] Alkalosis ^{∞} SIRS/Sepsis ^{§, B, +, *} Pheochromocytoma ^{$\infty, +$}	Glucocorticoids ^{∞, B,+} Acetylcholinesterase inhibitors [§] Fructose [∞] Xylitol [∞] Sorbitol [∞] Glucose [∞] Strychnine [§] Biguanides [*] Linezolid [*] Isoniazid [§] NRTIs [*] Lactulose [¢] 5-Fluorouracil [¶]	Epinephrine ^{∞, B,+} Acetaminophen ^{∞, B,+} Salicylates ^{∞, B,+} Gocaine ^{§, ∞,+ Methylxanthines^{∞,+} Cyanide[*] Nitroprusside[*] Ethylene glycol^{B,#} Methanol^{§,*,#} Propylene glycol[¢] Ethanol[#] Propofol[*]}	MELAS* Mitochondrial myopathy PDH deficiency ⁵		

Monitoring Con't

- Base excess
 - Measurement of total buffering capacity
 - Can be used a prognostic indicator

Base excess and lactate as prognostic indicators for patients admitted to intensive care

I. Smith, P. Kumar, S. Molloy, A. Rhodes, P. J. Newman, R. M. Grounds & E. D. Bennett

Monitoring Con't

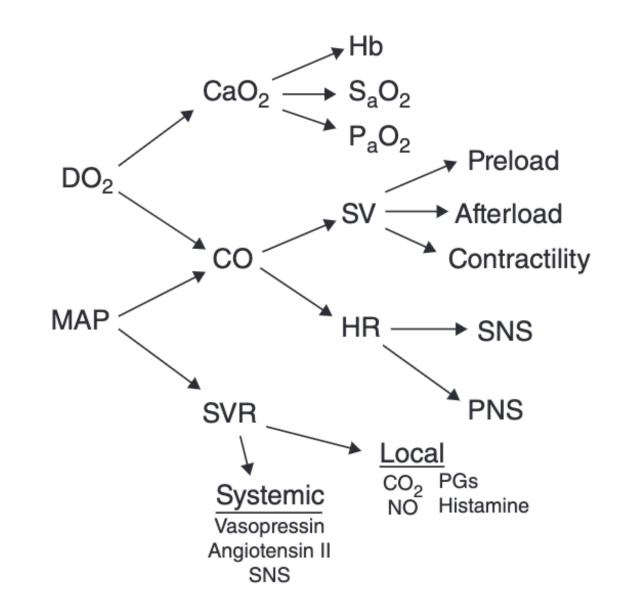
- Cardiac output
 - Pulmonary arterial catheter (Swan-Ganz catheter)
- Mixed venous oxygen saturation and Central Venous oxygen saturation
 - Assess global tissue oxygenation
 - Low ScVO2 from decreased oxygen delivery or increased oxygen consumption

Early goal-directed therapy in the treatment of severe sepsis and septic shock

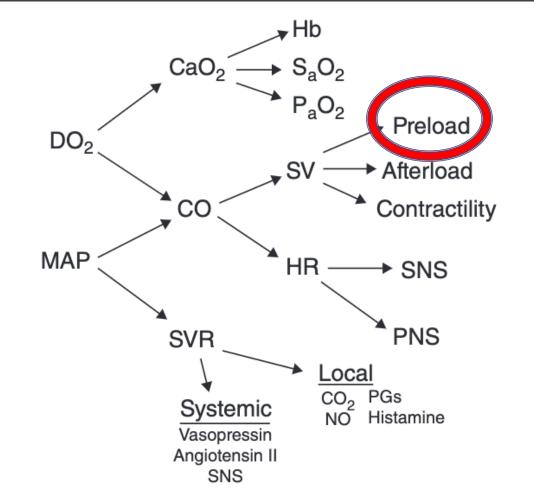
E Rivers ¹, B Nguyen, S Havstad, J Ressler, A Muzzin, B Knoblich, E Peterson, M Tomlanovich; Early Goal-Directed Therapy Collaborative Group

Treatment

Treatment of Shock


"Shock is a dynamic, multisystemic disorder. Animals with shock change rapidly, and thus therapy is not "a set of specific things to do in each case" but rather is dictated by serial monitoring of patient parameters and assessing response to treatment"

Goal of Treatment


- A guide for end points
 - Improved level of consciousness (responsive, alert is ideal)
 - Improved heart rate (ideally to normal range)
 - Improved arterial pulse quality
 - Improved mm color (at least light pink)
 - normalized CRT
 - Normothermia
 - Blood Lactate < 1.5 to 2.0 mmol/L
 - Normal blood pressure (SBP > 90 mmHg, MAP >60mmHg, ideally SAP > 110 mmHg)
 - CVP ≥ 5 cmH2O (especially with distributive shock; before reaching for vasopressors)
 - PCV 20-25%
 - Urine output at least 1.5 to 2 ml/kg/hour

Treatment of Shock Con't

- Major components of therapy rely on supportive care
 - Optimization of oxygen delivery and reestablishment of adequate tissue perfusion
 - Aggressive support of organ dysfunction
 - Identify and treat the underlying disease
 - Bundle concept

Treatment of Shock – Fluid Therapy

- Vascular access is essential!!
 - No subcutaneous fluids
- Short large bore catheter
- Intravenous fluids increase a patients preload which increases stroke volume and cardiac output

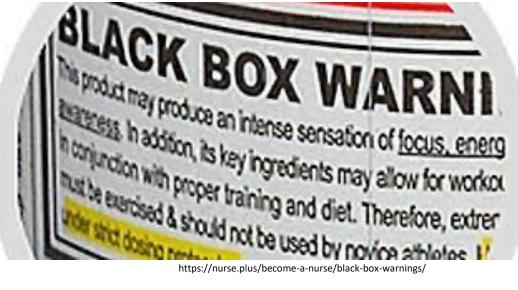
Fluid Therapy-Types of Fluids

Isotonic crystalloids

Fluid Type	Osmolality (mOsm/L)	[Na ⁺] (mEq/L)	[K ⁺] (mEq/L)	[CI ⁻] (mEq/L)	[Mg ²⁺] (mEq/L)	[Ca ²⁺] (mEq/L)	Lactate (mEq/L)	Acetate (mEq/L)	Gluconate (mEq/L)
0.9% NaCl	308	154		154		-	-	the state of the state	
Lactated Ringer's solution	273	130	4	109		3	28	tata + poe a	art
Plasmalyte 148	295	140	5	98	3	340.1 <u>—9</u> .31	balle <u>-</u> ma	27	23
Normosol-R	295	140	5	98	3	Glahr <u>no</u> aib	nidiv <u>a</u> babn	27	23

"Shock dose"

90ml/kg for a dog, divided by 4 for each bolus, over 15 minutes


60ml/kg for a cat, divided by 4 for each bolus, over 15 minutes

Fluid Therapy- Con't

- Hypertonic saline (7-7.5% NaCl)
 - Excellent for rapid, small volume resuscitation
 - Able expand its volume 3-5x the volume administered
 - Improves cardiac output, tissue perfusion, reduces intracranial pressure
 - Administered @ 3-5ml/kg over 15 minutes, followed by crystalloid resuscitation

Fluid Therapy- Con't


- Synthetic colloids
 - Hetastarch
 - Pentastarch
 - Tetrastarch
 - Vetstarch
- More sustained intravascular expansion
- 10-20ml/kg IV over 30 minutes
- Falling out of favor

Fluid Therapy- Blood Products

Fluid Therapy- Blood Products Con't

- Albumin (canine and human)
 - Ideal for hypoalbuminemic patients (<2g/dl)
 - Quick dose; 2g/kg over 6-8 hours
 - Albumin deficit; 10 x (desired albuminpt albumin) x kg x0.3
 - Risk of anaphylaxis and hypersensitivity reactions

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119536598.ch20

Fluid Therapy- Blood Products Con't

- Fresh frozen plasma
 - Used to treat hemorrhage secondary to acquired/hereditary coagulopathy
 - Contains all coagulation factors
 - 10-20ml/kg over 2-4 hours
 - Not used to raise albumin

Fre	ezer Carton
ollection Date	CANINE BLOOD PRODUCT DEA 1.1 NEGATIVE
Place Pro	Denor I.D. # 6901-34 Blood components separated by centrifugation.

For uses and cautions, see package insert.

CANINE PLASMA PRODUCT

6901-34

Teezer

9/17/13

120 ml

a1171

Fresh Frozen Plasma D Frozen Plasma

0

Blue Ridge Veterinary Blood Bank

540-338-7387

Cvroprecipitate

Approximate Total Volume

Storage at or below -18°

Donor ID

Date Drawn

https://quizlet.com/414522863/fluid-therapy-flash-cards/

UOL

circular of info

X ONLY

ions, contra

ERLY IDENTIFY IN

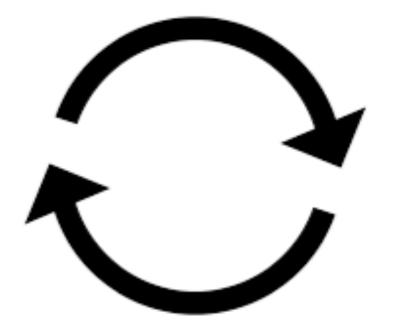
Fluid Therapy- Blood Products Con't

- Packed RBCs
 - Severe anemia or active hemorrhage
 - Restore oxygen carrying capacity and treat tissue hypoxia
 - 10-20 ml/kg over 4 hours

https://veteriankey.com/red-blood-cell-products/

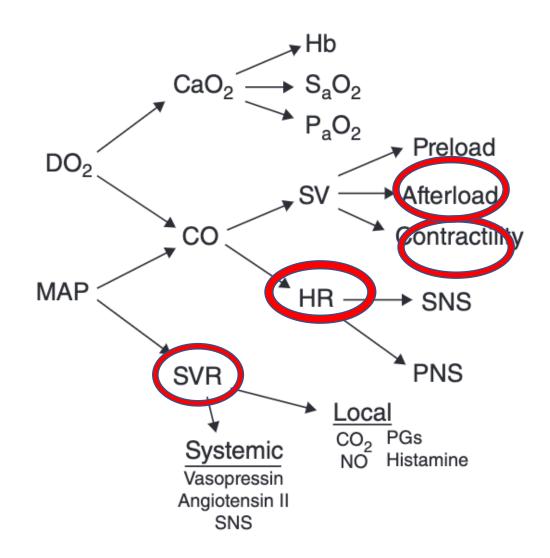
Fluid Therapy- Blood Products Con't

- Whole blood
 - Replaces red blood cells, platelets and plasma
 - Contains all cellular elements of blood
 - 20-30ml/kg over 2-4 hours



https://www.cliniciansbrief.com/article/blood-transfusion-dogs

Hypotensive Resuscitation


- Restoration of a lower than normal systolic blood pressure
- Goal is a systolic blood pressure of 80-90mmhg or mean arterial pressure of 60mmhg
- Helps facilitate control of hemorrhage

Continuous Re-evaluation

- Fluid requirements can change quickly
- Excessive fluid can lead to cellular edema
- Patients may remain hypovolemic

Treatment of Fluid Unresponsive Shock

Vasoactive and Inotropic agents

	Receptor activity			Effect on*					
	β1	β ₂	$\alpha_1 \& \alpha_2$	Contractility	Heart rate	Cardiac output	Vasomotor tone	Blood pressure	Dosage
Dobutamine	++	+	+	$\uparrow\uparrow$	1	$\uparrow\uparrow$	Ļ	Variable	5–20 μg/kg/min
Dopamine§	++	+	++	$\uparrow\uparrow$	$\uparrow\uparrow$	Variable	$\uparrow\uparrow$	$\uparrow\uparrow$	5–20 µg/kg/min
Epinephrine	+++	+++	+++	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	0.05-1 µg/kg/min
Norepinephrine	+	0	+++	1	Variable	Variable	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	0.1-2 µg/kg/min
Phenylephrine	0	0	+++	0	\downarrow	\downarrow	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	0.5-5 µg/kg/min
Vasopressin	0	0	0	0	\downarrow	\downarrow	$\uparrow\uparrow$	$\uparrow\uparrow$	0.5-5 mU/kg/min

Silverstein, Deborah & Beer, Kari. (2015). Controversies regarding choice of vasopressor therapy for management of septic shock in animals. Journal of veterinary emergency and critical care (San Antonio, Tex.: 2001). 25. 48-54. 10.1111/vec.12282.

Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock

Anand Kumar¹, Daniel Roberts, Kenneth E Wood, Bruce Light, Joseph E Parrillo, Satendra Sharma, Robert Suppes, Daniel Feinstein, Sergio Zanotti, Leo Taiberg, David Gurka, Aseem Kumar, Mary Cheang

- Should be administered within the first hour of recognition
- Right drug
- Right dose
- De-escalation
- Right duration

Antibiotic Therapy Con't

- Four quadrant therapy
- Bactericidal over bacteriostatic
- Duration of antibiotics should typically be 7-10 days
- Source control

Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock

Anand Kumar ¹, Paul Ellis ², Yaseen Arabi ³, Dan Roberts ⁴, Bruce Light ⁴, Joseph E Parrillo ⁵, Peter Dodek ⁶, Gordon Wood ⁷, Aseem Kumar ⁸, David Simon ⁹, Cheryl Peters ⁴, Muhammad Ahsan ⁴, Dan Chateau ¹⁰;

Cooperative Antimicrobial Therapy of Septic Shock Database Research Group

Suggested Empiric Antimicrobials

Situation	Antimicrobial drug	Intravenous dosage	Spectrum of activity	
Scenario 1				
Patients with no recent antimicrobial history (30 days) and community-acquired infection	Ampicillin/sulbactam	50 mg/kg q6h	Gram-negative bacteria, streptococci, susceptible staphylococci and enterococci, most anaerobes	
	OR Clindamycin	12 mg/kg q8h		
	AND	15 mg/kg q24h		
	Amikacin			
Scenario 2				
Patients in scenario 1 with acute kidney injury or chronic kidney disease*	Ampicillin/sulbactam	50 mg/kg q8h	Most gram-negative bacteria, anaerobes, streptococci, and susceptible staphylococci and enterococci. Not effective for MDR gram-negative bacteria	
	OR Clindamycin	12 mg/kg q8h		
	AND	Dogs: 15 mg/kg first dose then 10 mg/kg q24h		
	Enrofloxacin			
Scenario 3				
Patients with recent antimicrobial use or hospital-acquired infection	Third-generation cephalosporin with anti-Pseudomonas activity		Gram-negative rods including Pseudomonas and streptococci	
	Cefotaxime	30 mg/kg q8h	Not active against methicillin- resistant staphylococci and enterococci [†]	
	Ceftazidime	30 mg/kg q8h		
Scenario 4				
Patients that developed new- onset or worsening severe sepsis/ septic shock while on a third- generation cephalosporin	Meropenem	12 mg/kg q8h	MDR aerobic gram-negative bacteria, streptococci, and anaerobes	
AND/OR	AND/OR			
have risk factors for methicillin- resistant <i>Staphylococcus</i> or MDR <i>Enterococcus</i>	Vancomycin	15 mg/kg q8h	Methicillin-resistant staphylococci and MDR enterococci	

Oxygen therapy

- Flow by oxygen
- Nasal lines
- Oxygen cage
- Intubation and mechanical ventilation

Nutrition

- Acute catabolic response
- Surviving sepsis guidelines recommend starting enteral nutrition within 72 hours.

Early nutritional support is associated with decreased length of hospitalization in dogs with septic peritonitis: A retrospective study of 45 cases (2000–2009)

Debra T. Liu DVM, Dorothy C. Brown DVM, MSCE, DACVS, Deborah C. Silverstein DVM, DACVECC 🔀

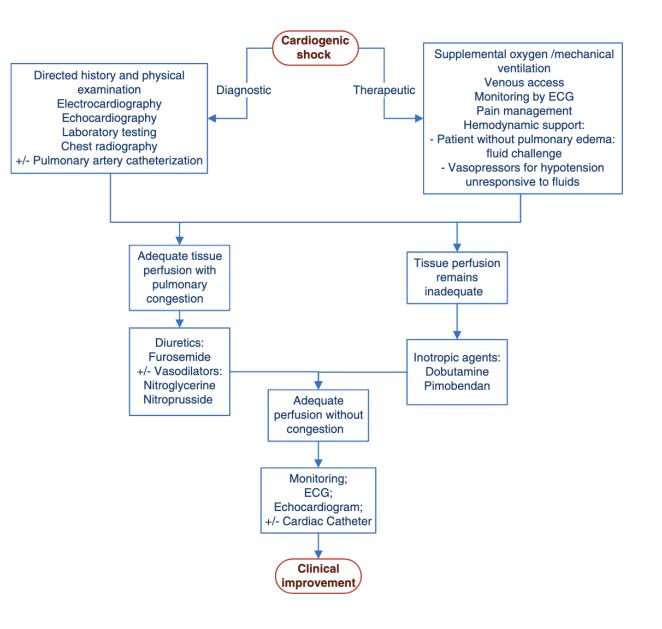
Retrospective evaluation of the route and timing of nutrition in dogs with septic peritonitis: 68 cases (2007– 2016)

Kristin M. Smith DVM, DACVECC 🔀, Aaron Rendahl PhD, Yiwen Sun, Jeffrey M. Todd DVM, DACVECC

Adjunctive Therapy

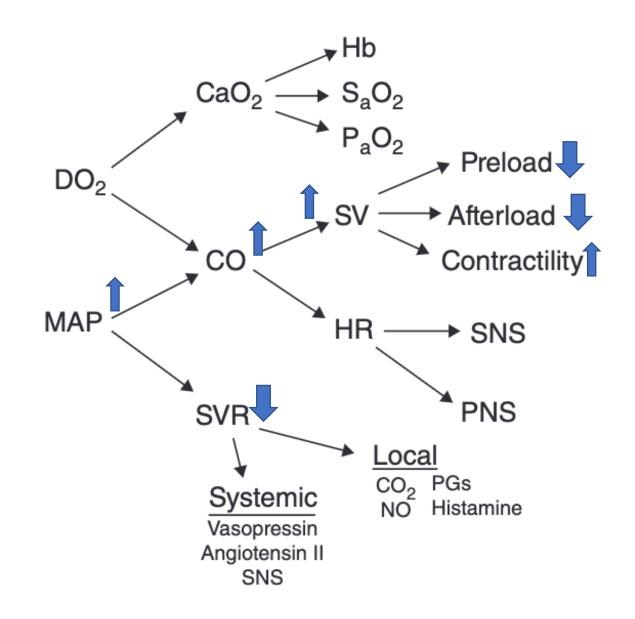
- Dextrose
- Anti-thrombotics
- Pain management
- Low dose hydrocortisone

Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock


Djillali Annane¹, Véronique Sébille, Claire Charpentier, Pierre-Edouard Bollaert, Bruno François, Jean-Michel Korach, Gilles Capellier, Yves Cohen, Elie Azoulay, Gilles Troché, Philippe Chaumet-Riffaud, Eric Bellissant

Hydrocortisone therapy for patients with septic shock

Charles L Sprung¹, Djillali Annane, Didier Keh, Rui Moreno, Mervyn Singer, Klaus Freivogel, Yoram G Weiss, Julie Benbenishty, Armin Kalenka, Helmuth Forst, Pierre-Francois Laterre, Konrad Reinhart, Brian H Cuthbertson, Didier Payen, Josef Briegel; CORTICUS Study Group


Treatment of Cardiogenic Shock

- Rapid evaluation
- Brief physical exam
- Limited stress

Treatment of Cardiogenic Shock Con't

- Diuretics
 - Furosemide (2mg/kg) IV or IM
- Ionotropic agents
 - Dobutamine
 - Pimobendan
- Vasodilatory agents
 - Nitroprusside
 - Nitroglycerine

Treatment of Cardiogenic Shock Con't

- Anti-arrhythmics
- Pericardiocentesis
- Pace maker

Drug		Doses	Comments	
Atenolol	РО	0.2–2.0 mg/kg twice daily (gradually titrated as necessary)	Titrate to effect, can decrease contractility, use cautiously if concurrent uncontrolled CHF; beta-blockers are often not well tolerated if AF is associated with significant underlying heart disease	
Amiodarone	IV	2–5 mg/kg IV bolus administered over 10 min, followed by a CRI of 0.8 mg/kg/h for 6 h, then decrease to 0.4 mg/ kg/h		
	PO	Week 1: 10–15 mg/kg twice daily Week 2: 5–7.5 mg/kg twice daily Week 3 onwards: 5–7.5 mg/kg once daily	After loading period (3–4 weeks) check amiodarone levels. Monitor hepatic and thyroid function and complete blood count bimonthly	
Digoxin	РО	2.5–3.0 μ g/kg twice daily lf body weight >20 kg the dose can be calculated based on the body surface area at 0.22 mg/m ²	Do not exceed 0.25 mg per dog q 12 h.	
Diltiazem	IV		IV dosing can cause transient hypotension and excessive AV block	
	РО		Monitor for excessive bradycardia or AV block, rarely can also cause GI signs (anorexia, vomiting, diarrhoea)	
Esmolol	IV	$50-100 \ \mu$ g/kg IV bolus (can be repeated up to max500 μ g/kg) CRI 50–200 μ g/kg/min	May cause myocardial depression, hypotension, bradycardia, excessive AV block - close monitoring during administration is required. The authors would only use esmolol if diltiazem IV is not available.	
Lidocaine	IV	2–3 mg/kg over 5 s (repeat up to 3 times, not to exceed 8 mg/kg)	Side effects: depression, vomiting and seizures	
Sotalol	PO	1.5–2.5 mg/kg twice daily	Reduces contractility, titrate to effect in in cases with severe systolic dysfunction	
Electrical cardioversic	Transthoracic on Transeosophageal Intracardiac (transvenous)	Biphasic defibrillator shock: 0.5–3.0 J/kg Monophasic defibrillator shock: 4–10 J/kg Monophasic defibrillator shock: 0.5–2.5 J/kg Biphasic shock: 0.6–1.6 J/kg	Synchronization of the shock delivery to the R-waves of the QRS complexes is imperative to prevent induction of ventricular fibrillation. The authors prefer transthoracic cardioversion.	

Treatment of Cardiogenic Shock Con't

Retrospective evaluation of the outcome and prognosis of undergoing positive pressure ventilation due to cardiac and noncardiac causes in dogs and cats (2019–2020): 101 cases

Nama Oppenheimer DVM 🔀, Efrat Kelmer DVM, MS, DACVECC, DECVECC, Noam Shwartzshtei BSC, Gilad Segev DVM, DECVIM, Dan Ohad DVM, PhD, DACVIM, DECVIM ... See all authors 🗸

Case 1

 10 year old male neutered golden presented for lethargy and collapse. On presentation patient is quiet and tachypneic. Initial physical exam revealed pale mucus membranes, CRT >2, HR of 160, with a palpable fluid wave. The patient also has normal to cool limbs, normal to weak pulses with a blood pressure of 70. You place a catheter and are only able to obtain a pcv/ts; 20/4.

• What is your initial management

https://www.ndsr.co.uk/veterinary-professionals/insight/news-81-spontaneous-non-traumatic-haemoabdomen-in-the-dog statement of the statement

Case 2

 3 year old male neutered golden presented with a one week history of vomiting, anorexia and lethargy. Over the last 12 hours the patients lethargy has progressed.
 On presentation the patient is dull to obtunded. Temp 104, HR 160, panting, CRT
 <1, Hyperemic MM, with warm limbs but weak pulses. Patient has abdominal discomfort. Blood pressure of 50.

• What is your initial management

https://www.cliniciansbrief.com/article/quiz-mucous-membrane-evaluation-dogs

https://todaysveterinarynurse.com/emergency-medicine-critical-care/shock-an-overview/

Case 3

 8 year old male neutered Cavalier presented for hyporexia, and progressive tachypnea. On presentation the patient was anxious, RR 60, HR 150, and cyanotic mucus membranes. Physical exam revealed bilateral crackles, fair to weak pulses and a grade 4/6 murmur. Unable to obtain blood pressure because patient was in distress

• What is your initial management

https://heartsmart.vet.tufts.edu/difficulty-breathing-dyspnea/

Questions?

References

- DiFazio, J. and Hackner, S.G. (2018). Anemia. In Textbook of Small Animal Emergency Medicine (eds K.J. Drobatz, K. Hopper, E. Rozanski and D.C. Silverstein). https://doi.org/10.1002/9781119028994.ch10
- Liu, D.T., Brown, D.C. and Silverstein, D.C. (2012), Early nutritional support is associated with decreased length of hospitalization in dogs with septic peritonitis: A retrospective study of 45 cases (2000–2009). Journal of Veterinary Emergency and Critical Care, 22: 453-459. https://doi.org/10.1111/j.1476-4431.2012.00771.x
- Smith, KM, Rendahl, A, Sun, Y, Todd, JM. Retrospective evaluation of the route and timing of nutrition in dogs with septic peritonitis: 68 cases (2007–2016). J Vet Emerg Crit Care. 2019; 29: 288–295. https://doi.org/10.1111/vec.12841
- Bolfer, L. and Sleeper, M.M. (2018). Cardiogenic Shock. In Textbook of Small Animal Emergency Medicine (eds K.J. Drobatz, K. Hopper, E. Rozanski and D.C. Silverstein). https://doi.org/10.1002/9781119028994.ch154
- Kohen, C. and Hopper, K. (2018). Lactate Monitoring. In Textbook of Small Animal Emergency Medicine (eds K.J. Drobatz, K. Hopper, E. Rozanski and D.C. Silverstein). https://doi.org/10.1002/9781119028994.ch156
- Boyd, C. and Smart, L. (2018). Hypovolemic Shock. In Textbook of Small Animal Emergency Medicine (eds K.J. Drobatz, K. Hopper, E. Rozanski and D.C. Silverstein). https://doi.org/10.1002/9781119028994.ch153
- Smarick, S. and Keir, I. (2018). Additional Mechanisms of Shock. In Textbook of Small Animal Emergency Medicine (eds K.J. Drobatz, K. Hopper, E. Rozanski and D.C. Silverstein). <u>https://doi.org/10.1002/9781119028994.ch155</u>
- Cooper, E. (2018). Pathophysiology of Shock. In Textbook of Small Animal Emergency Medicine (eds K.J. Drobatz, K. Hopper, E. Rozanski and D.C. Silverstein). https://doi.org/10.1002/9781119028994.ch152
- Sharp, C.R. (2018). Systemic Inflammatory Response Syndrome, Sepsis, and Multiple Organ Dysfunction Syndrome. In Textbook of Small Animal Emergency Medicine (eds K.J. Drobatz, K. Hopper, E. Rozanski and D.C. Silverstein). https://doi.org/10.1002/9781119028994.ch159
- Epstein, S. (2018). Antimicrobial Therapy in the Emergency Patient. In Textbook of Small Animal Emergency Medicine (eds K.J. Drobatz, K. Hopper, E. Rozanski and D.C. Silverstein). <u>https://doi.org/10.1002/9781119028994.ch200</u>
- Cinel I, Dellinger RP. Guidelines for severe infections: are they useful? Curr Opin Crit Care. 2006 Oct;12(5):483-8. doi: 10.1097/01.ccx.0000244131.15484.4e. PMID: 16943730.
- Annane D, Sébille V, Charpentier C, Bollaert PE, François B, Korach JM, Capellier G, Cohen Y, Azoulay E, Troché G, Chaumet-Riffaud P, Bellissant E. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002 Aug 21;288(7):862-71. doi: 10.1001/jama.288.7.862. Erratum in: JAMA. 2008 Oct 8;300(14):1652. Chaumet-Riffaut, Philippe [corrected to Chaumet-Riffaud, Philippe]. PMID: 12186604.
- Cha JK, Kim HS, Kim EJ, Lee ES, Lee JH, Song JA. Effect of Early Nutritional Support on Clinical Outcomes of Critically III Patients with Sepsis and Septic Shock: A Single-Center Retrospective Study. Nutrients. 2022 May 31;14(11):2318. doi: 10.3390/nu14112318. PMID: 35684117; PMCID: PMC9182793.

Cha JK, Kim HS, Kim EJ, Lee ES, Lee JH, Song IA. Effect of Early Nutritional Support on Clinical Outcomes of Critically III Patients with Sepsis and Septic Shock: A Single-Center Retrospective Study. Nutrients. 2022 May 31;14(11):2318. doi: 10.3390/nu14112318. PMID: 35684117; PMCID: PMC9182793.

References Con't

- Wischmeyer PE. Nutrition Therapy in Sepsis. Crit Care Clin. 2018 Jan;34(1):107-125. doi: 10.1016/j.ccc.2017.08.008. Epub 2017 Oct 13. PMID: 29149933; PMCID: PMC6447319.
- Rosenstein PG, Tennent-Brown BS, Hughes D. Clinical use of plasma lactate concentration. Part 1: Physiology, pathophysiology, and measurement. J Vet Emerg Crit Care (San Antonio). 2018 Mar;28(2):85-105. doi: 10.1111/vec.12708. PMID: 29533512.
- Rosenstein, P.G., Tennent-Brown, B.S. and Hughes, D. (2018), Clinical use of plasma lactate concentration. Part 1: Physiology, pathophysiology, and measurement. Journal of Veterinary Emergency and Critical Care, 28: 85-105. https://doi.org/10.1111/vec.12708
- Barr, J.W. (2020). Septic Shock. In Clinical Small Animal Internal Medicine (eds D.S. Bruyette, N. Bexfield, J.D. Chretin, L. Kidd, S. Kube, C. Langston, T.J. Owen, M.A. Oyama, N. Peterson, L.V. Reiter, E.A. Rozanski, C. Ruaux and S.M.F. Torres). https://doi.org/10.1002/9781119501237.ch43
- MACINTIRE, D.K., DROBATZ, K.J., HASKINS, S.C., SAXON, W.D. and Haskins, S.C. (2012). SHOCK. In Manual of Small Animal Emergency and Critical Care Medicine (eds D.K. MACINTIRE, K.J. DROBATZ, S.C. HASKINS and W.D. SAXON). https://doi.org/10.1002/9781119421870.ch4
- Dave S, Cho JJ. Neurogenic Shock. [Updated 2022 Feb 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459361/
- Standl T, Annecke T, Cascorbi I, Heller AR, Sabashnikov A, Teske W. The Nomenclature, Definition and Distinction of Types of Shock. Dtsch Arztebl Int. 2018 Nov 9;115(45):757-768. doi: 10.3238/arztebl.2018.0757. PMID: 30573009; PMCID: PMC6323133.
- Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):801-10. doi: 10.1001/jama.2016.0287. PMID: 26903338; PMCID: PMC4968574.
- Silverstein DC, Beer KA. Controversies regarding choice of vasopressor therapy for management of septic shock in animals. J Vet Emerg Crit Care (San Antonio). 2015 Jan-Feb;25(1):48-54. doi: 10.1111/vec.12282. PMID: 25655726.
- Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, Mcintyre L, Ostermann M, Prescott HC, Schorr C, Simpson S, Wiersinga WJ, Alshamsi F, Angus DC, Arabi Y, Azevedo L, Beale R, Beilman G, Belley-Cote E, Burry L, Cecconi M, Centofanti J, Coz Yataco A, De Waele J, Dellinger RP, Doi K, Du B, Estenssoro E, Ferrer R, Gomersall C, Hodgson C, Møller MH, Iwashyna T, Jacob S, Kleinpell R, Klompas M, Koh Y, Kumar A, Kwizera A, Lobo S, Masur H, McGloughlin S, Mehta S, Mehta Y, Mer M, Nunnally M, Oczkowski S, Osborn T, Papathanassoglou E, Perner A, Puskarich M, Roberts J, Schweickert W, Seckel M, Sevransky J, Sprung CL, Welte T, Zimmerman J, Levy M. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021 Nov;47(11):1181-1247. doi: 10.1007/s00134-021-06506-y. Epub 2021 Oct 2. PMID: 34599691; PMCID: PMC8486643.
- Keir I, Dickinson AE. The role of antimicrobials in the treatment of sepsis and critical illness-related bacterial infections: examination of the evidence. J Vet Emerg Crit Care (San Antonio). 2015 Jan-Feb;25(1):55-62. doi: 10.1111/vec.12272. Epub 2015 Jan 5. PMID: 25559992.
- Bajwa EK, Malhotra A, Thompson BT. Methods of monitoring shock. Semin Respir Crit Care Med. 2004 Dec;25(6):629-44. doi: 10.1055/s-2004-860986. PMID: 16088506; PMCID: PMC3504461.
- Smith I, Kumar P, Molloy S, Rhodes A, Newman PJ, Grounds RM, Bennett ED. Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med. 2001 Jan;27(1):74-83. doi: 10.1007/s001340051352. PMID: 11280677.
- Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001 Nov 8;345(19):1368-77. doi: 10.1056/NEJMoa010307. PMID: 11794169.

References Con't

.

- Gourd, Nicholas M.; Nikitas, Nikitas (2019). *Multiple Organ Dysfunction Syndrome. Journal of Intensive Care Medicine, (), 088506661987145–.* doi:10.1177/0885066619871452
- Levy, Mitchell M.; Rhodes, Andrew; Phillips, Gary S.; Townsend, Sean R.; Schorr, Christa A.; Beale, Richard; Osborn, Tiffany; Lemeshow, Stanley; Chiche, Jean-Daniel; Artigas, Antonio; Dellinger, R. Phillip (2015). Surviving Sepsis Campaign. Critical Care Medicine, 43(1), 3–12. doi:10.1097/CCM.000000000000723
- Abbott-Johnson K, Pierce KV, Roof S, Del Rio CL, Hamlin R. Acute Effects of Pimobendan on Cardiac Function in Dogs With Tachycardia Induced Dilated Cardiomyopathy: A Randomized, Placebo-Controlled, Crossover Study. Front Vet Sci. 2021 Jul 1;8:646437. doi: 10.3389/fvets.2021.646437. PMID: 34277749; PMCID: PMC8281278.
- Klein S, Nolte I, Rumstedt K, Sehn M, Raue JF, Weiner F, Treese JS, Beyerbach M, Bach JP. The effect of treatment with pimobendan in dogs with preclinical mitral valve disease a placebo-controlled double-blinded crossover study. BMC Vet Res. 2021 Sep 25;17(1):310. doi: 10.1186/s12917-021-03014-5. PMID: 34563187; PMCID: PMC8467240.
- Krishnamoorthy V, Motika CO, Ohnuma T, McLean D, Ellis AR, Raghunathan K. Perioperative colloid choice and bleeding in patients undergoing musculoskeletal surgery: An observational administrative database study. Int J Crit Illn Inj Sci. 2021 Oct-Dec;11(4):223-228. doi: 10.4103/IJCIIS.IJCIIS_178_20. Epub 2021 Dec 18. PMID: 35070912; PMCID: PMC8725802.
- Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS, Lemeshow S, Osborn T, Terry KM, Levy MM. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N Engl J Med. 2017 Jun 8;376(23):2235-2244. doi: 10.1056/NEJMoa1703058. Epub 2017 May 21. PMID: 28528569; PMCID: PMC5538258.
- Kim HI, Park S. Sepsis: Early Recognition and Optimized Treatment. Tuberc Respir Dis (Seoul). 2019 Jan;82(1):6-14. doi: 10.4046/trd.2018.0041. Epub 2018 Sep 28. PMID: 30302954; PMCID: PMC6304323.

NOTICE

CE credit certificates & presentation slides will be emailed to you. If you do not receive an email with this information within a week, contact Nichole *nicholemanfredi@capecodvetspecialists.com*

