Stayin' Alive CPR / RECOVER 2.0

Katie Carignan, DVM, DACVECC

January 7th, 2025 Cape Cod Vet Specialists

Who am I?

- $_{\odot}~$ Born and raised in Georgia
- Grew up doing dog sports (agility and frisbee)
- Currently share my life with 4 cats, 1 dog, and a wife
- Parents were both in human emergency medicine

Education

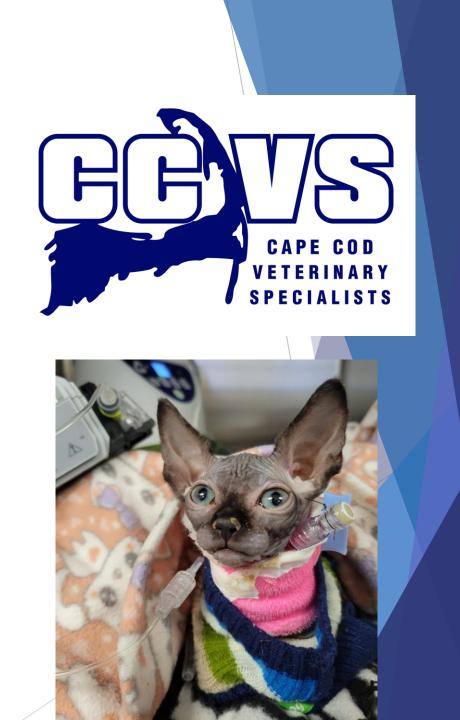
- Berry College
 - ∘ Bachelors of Science 2015

- University of Georgia, College of Veterinary Medicine
 - Doctor of Veterinary Medicine 2019

College of Veterinary Medicine UNIVERSITY OF GEORGIA

Specialty Training

The Animal Medical Center
 Rotating Internship - 2019-2020



- University of Georgia, College of Veterinary Medicine
 - Emergency and Critical Care Residency 2020-2023
 - DACVECC October 2023

Employment

- Cape Cod Veterinary Specialists
 Criticalist October 2023 Present
 - $_{\circ}$ Special interests:
 - $_{\circ}\,$ Feline critical care
 - $_{\circ}$ Trauma
 - $_{\circ}$ Sepsis
 - $_{\circ}\,$ Patient well-being in the ICU

Outline

- RECOVER history
- Recognition of cardiopulmonary arrest (CPA)
- Basic Life Support
- Advanced Life Support
- Post-resuscitation care
- \circ Application

Cardiopulmonary arrest (CPA) is deadly

► 5-7% survival to discharge

- Standardized cardiopulmonary resuscitation (CPR) guidelines in human medicine led to remarkable improvement in survival rates
 - ► 13.7% (2000) → 22.3% (2009)
- Led to the RECOVER initiative
 - Reassessment Campaign of Veterinary Resuscitation

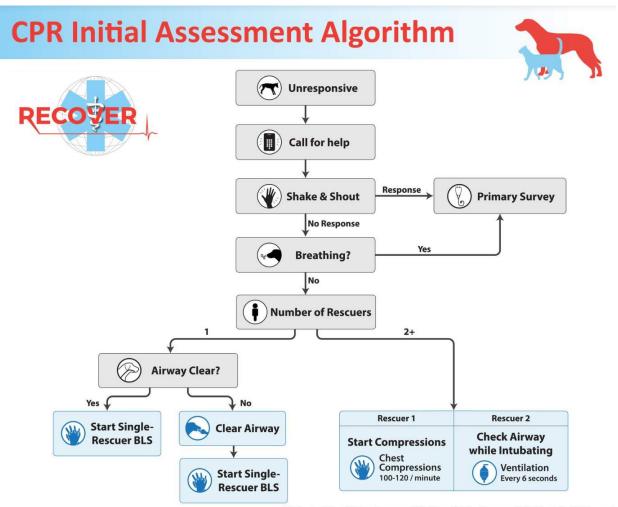
► The first RECOVER guidelines were published in 2012

- ► Two overarching goals:
 - 1) Devise clinical guidelines on how to best treat CPA in dogs and cats
 - 2) Identify important knowledge gaps in veterinary CPR that needed to be filled in order to improve the quality of recommendations and patient care in the future

- A group of over 80 veterinarians participated in the initial research that allowed for writing the original guidelines
- ► 5 topics were assessed
 - Preparedness & Prevention
 - Basic Life Support (BLS)
 - Advanced Life Support (ALS)
 - Monitoring
 - Post-Cardiac Arrest Care

▶ In 2024, the RECOVER guidelines were updated

- Over 200 veterinary professionals were involved in this update
- New domains were added including:
 - Newborn Resuscitation
 - ► First Aid
 - ► Large Animal CPR
- In this presentation, we'll focus on the updates most relevant to small animal medicine



Recognition of CPA

- CPA should be highly suspected in any apneic, nonresponsive patient
 - ▶ Assessment should be brief \rightarrow no more than 10-15 seconds
- CPR should be started as soon as CPA is suspected
 - Pulse palpation is insensitive and should not be relied on as the decision point for starting CPR
 - Even short delays in starting CPR reduces survival rates
 - Starting CPR on a patient not in CPA carries minimal risks

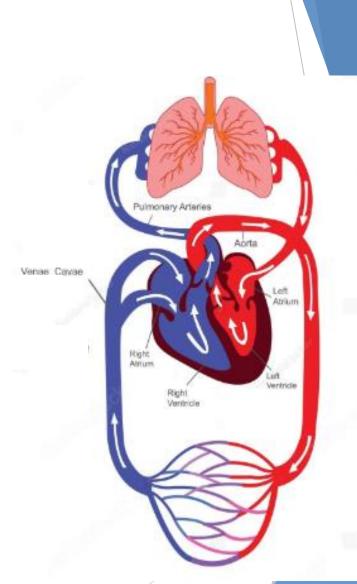
Recognition of CPA

© 2024 American College of Veterinary Emergency and Critical Care and Veterinary Emergency and Critical Care Society. All rights reserved.

https://doi.org/10.1111/vec.13391

Basic Life Support (BLS) consists of two major components

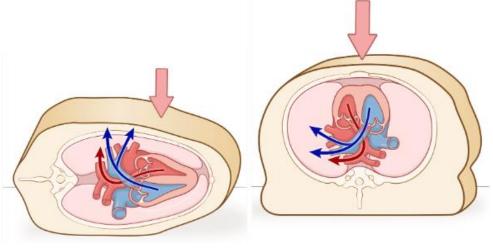
Chest compressions


Ventilation and oxygenation

BLS is CRUCIAL

Without well-executed, high-quality BLS, no amount of Advanced Life Support (ALS) will matter

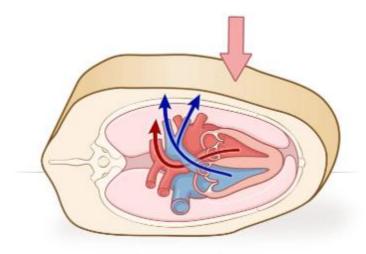
- Chest compressions
 - ► Two main goals:
 - ► 1) Restore pulmonary blood flow → allows for elimination of CO₂ and uptake of O₂
 - 2) Deliver O₂ to tissues to allow for energy production
- Even high-quality chest compressions only produce about 30% of normal cardiac output

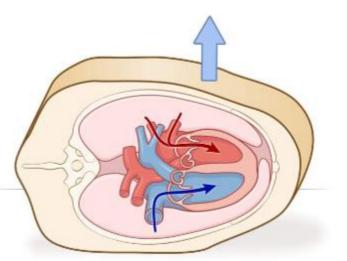


Chest compressions

- Two theories as to how chest compressions produce forward blood flow
 - ▶ 1) Cardiac pump method
 - ► 2) Thoracic pump method

- Cardiac pump method
 - Right and left ventricles are compressed directly between ribs (lateral recumbency) or between sternum and spine (dorsal recumbency)


2024 RECOVER CPR – Basic Life Support Course


- Cardiac pump method
 - Compression increases pressure in ventricles
 - Closes mitral / tricuspid valves
 - Opens pulmonic / aortic valves
 - Provides blood flow to lungs / tissue
 - Recoil of heart during relaxation creates negative pressure
 - Ventricles fill before the next compression

Cardiac pump method

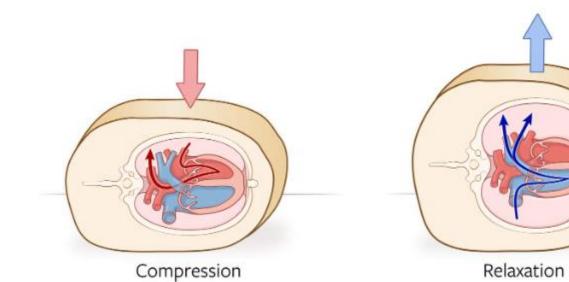
Compression

Relaxation

2024 RECOVER CPR – Basic Life Support Course

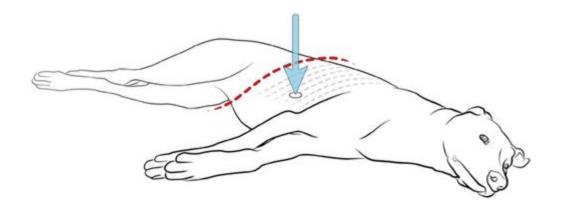
Thoracic pump method

Relies on changes in overall intrathoracic pressure vs. just pressure within the ventricles


► Heart acts as a passive conduit for blood flow

- Thoracic pump method
 - During compression:
 - Increases in intrathoracic pressure move blood from the lungs into the left ventricle
 - Aortic compression pushes blood into extra-thoracic tissues
 - During relaxation:
 - Elastic recoil of the chest causes the lungs to expand which pulls blood through the vena cavae and into the right side of the heart
 - In this theory, all valves remain open through compression and relaxation

► Thoracic pump method

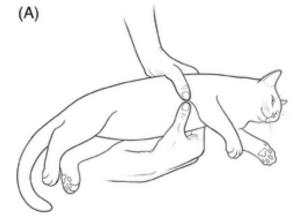

CAPE COD VETERINARY SPECIALISTS

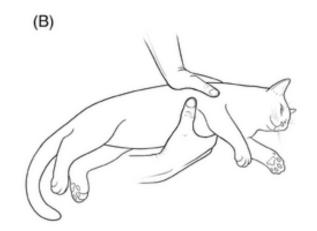
2024 RECOVER CPR – Basic Life Support Course

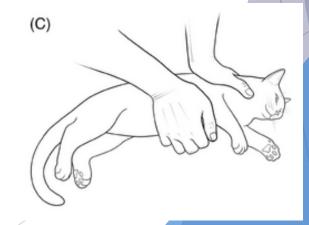
Which patients benefit the most from each theory?

- Cardiac pump method
 - ► Keel-chested dogs
 - ► Wide chested dogs in dorsal recumbency

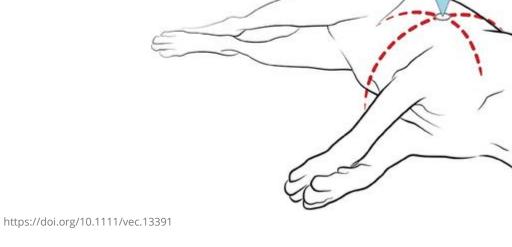
(A)




https://doi.org/10.1111/vec.13391

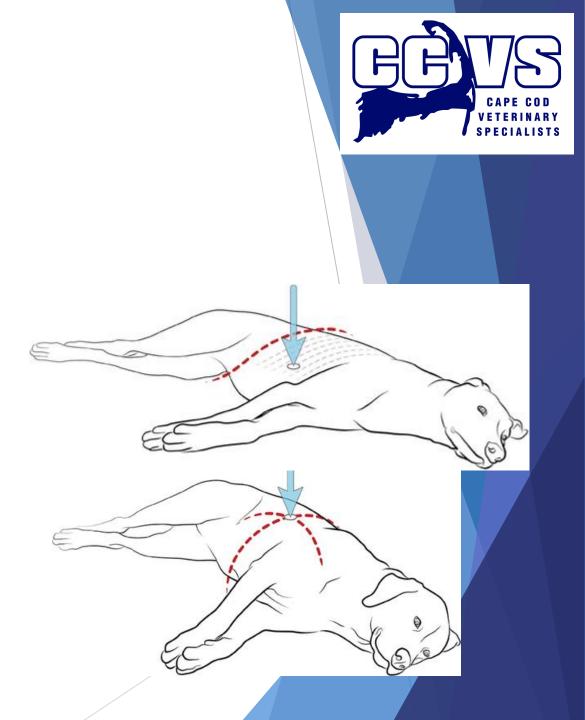


- ► Which patients benefit the most from each theory?
 - Cardiac pump method
 - Cats and small dogs
 - ► A) Circumferential, 2-thumb technique
 - ► B) 1-handed technique
 - ► C) 1-handed heel technique



https://doi.org/10.1111/vec.13391

Which patients benefit the most from each theory?


- Thoracic pump method
 - Round chested dogs

Hand positioning

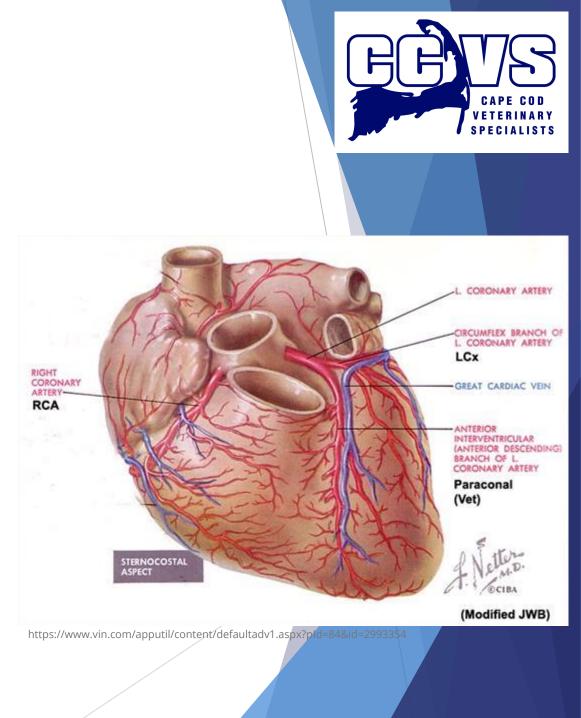
Compressor body positioning

- Behind patient if lateral
- Straddle patient if dorsal
- Shoulders, elbows, and wrists are in alignment
- Shoulders are vertical over compression point
- Bend at waist and engage core to perform compressions

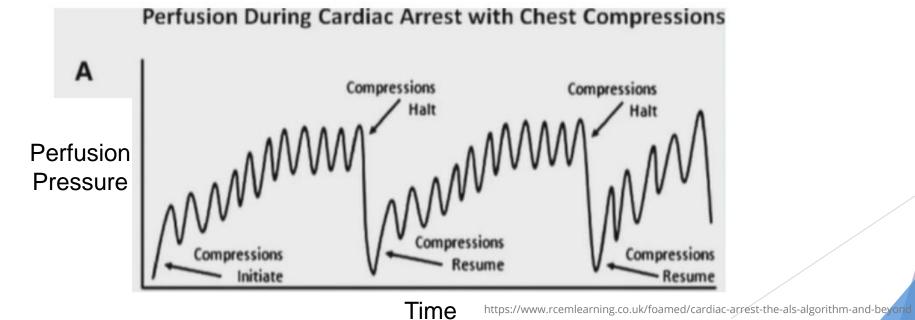
Compression depth

► Lateral recumbency \rightarrow 1/3 to 1/2 the width of the chest

► Dorsal recumbency \rightarrow 1/4 the width of the chest

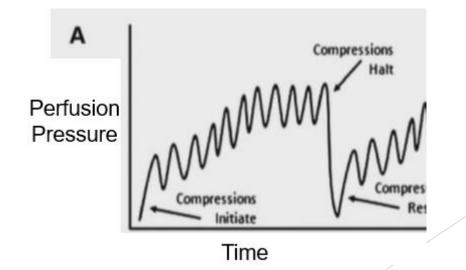

Compression frequency

▶ 100-120 compressions / minute

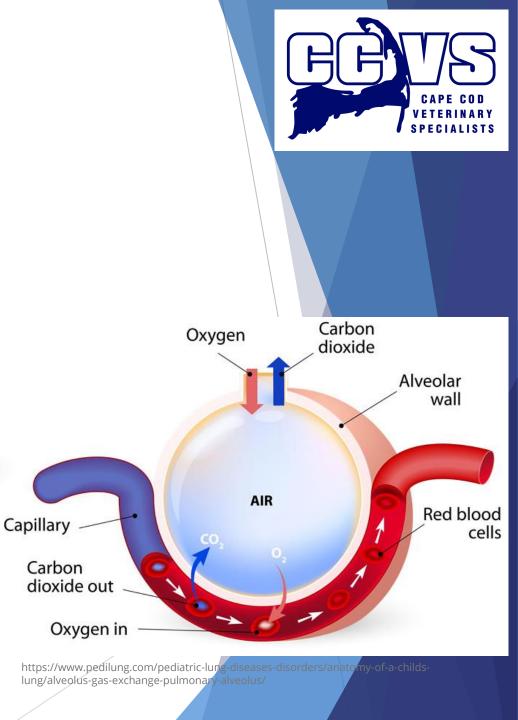


Chest recoil

- Release of compression is as important as compression itself
- Leaning on the chest results in reduced return of blood to the heart and in turn reduced cardiac output
- Myocardial perfusion occurs during decompression

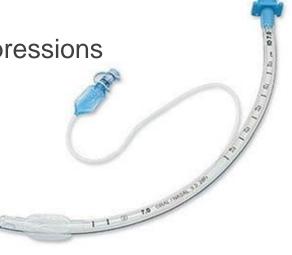

- Compression cycles
 - ► 2-minute cycles
 - Optimizes development of adequate coronary perfusion pressure

Compressor rotation


- ▶ If possible, new compressor at the end of each 2-minute cycle
- This reduces compressor fatigue, improves the quality of compressions, and reduces the likelihood of leaning on the patient
- Efficiency is key!

Ventilation and oxygenation

- Ventilation removal of CO₂ that is produced by tissues as a by-product of metabolism
- Oxygenation transport of oxygen to tissues for metabolism
- Compression only CPR?


Ensure airway is clear

Options for respiratory support

- ▶ 1) Endotracheal intubation
- ► 2) Tight-fitting face mask
- ► 3) Mouth-to-nose

- Options for respiratory support
 - Endotracheal intubation
 - Preferred method of respiratory support
 - Should be performed in lateral
 - Cuff should be inflated
 - Breaths can be provided during compressions

Options for respiratory support

Mask breathing

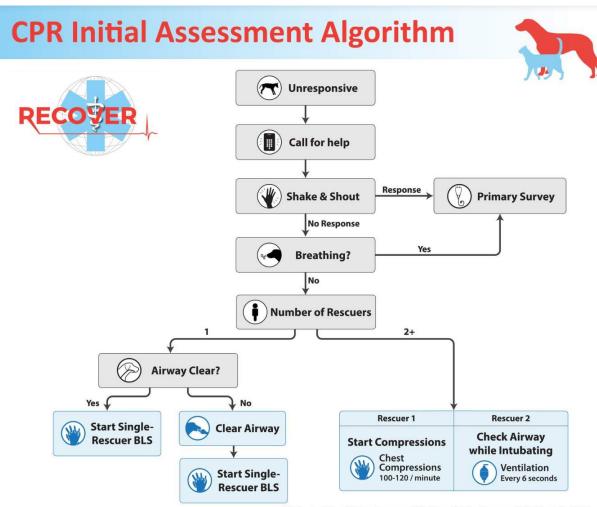
- Can be considered if supplies for intubation are not available
- ► Tight-fitting
- Breaths must be delivered between compressions
 - ► 30 compressions : 2 breaths

Options for respiratory support

Mouth-to-nose

- Consider risk to rescuer
 - If rescuer risk is high, perform compression only CPR
- Ensure mouth closed / sealed
- Extend neck
- Breaths delivered between compressions
 - ► 30 compressions : 2 breaths

https://doi.org/10.1111/j.1476-4431.2012.00757.x



Basic Life Support

- Breath frequency
 - 10 breaths / minute = 1 breath / 6 seconds
 - Reduce positive pressure within the chest
- Avoid hyperventilation and hypoventilation
 - ► Hyperventilation → ↓ CO₂ → cerebral vasoconstriction → decreased cerebral perfusion
 - ► Hypoventilation → ↑ CO₂ → cerebral vasodilation → increased intracranial pressure

BLS

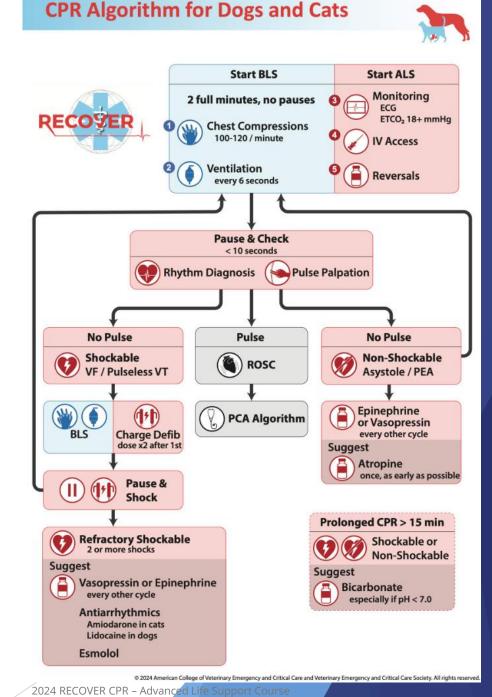
© 2024 American College of Veterinary Emergency and Critical Care and Veterinary Emergency and Critical Care Society. All rights reserved.

Basic Life Support

Single rescuer CPR

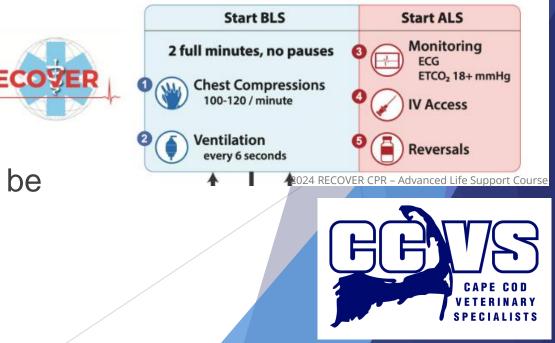
- Assess the airway and clear any obvious obstructions before starting chest compressions
 - This can happen while calling for help
- Compression to ventilation ratio
 - ► 30 compressions : 2 breaths
- ► Continue this cycle until:
 - Additional rescuers arrive
 - ROSC is achieved
 - Rescue efforts are terminated

Basic Life Support


Multiple rescuer CPR

- One rescuer should immediately begin chest compressions
 - ▶ 100-120 compressions / minute
 - Appropriate hand placement for patient's chest phenotype
- A second rescuer should secure an airway, ideally via intubation
 - 10 breaths / minute
 - Short inspiratory time
- 2-minute cycles
 - ▶ If fatiguing before 2 minutes is up, replace compressor sooner

- You've instituted high-quality BLS... now what?
- Your next step is to provide Advanced Life Support (ALS)

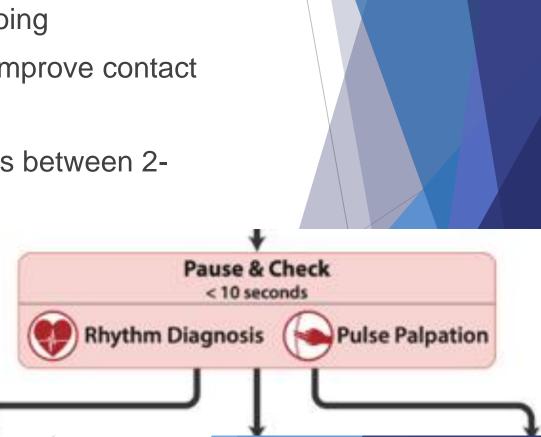


- As previously discussed, BLS always comes first, but once started, we move on to ALS
 - ► 3) Monitoring
 - ► 4) IV access
 - ► 5) Reversals
- If there is enough support, these tasks can be started while BLS is starting

CPR Algorithm for Dogs and Cats

Monitoring

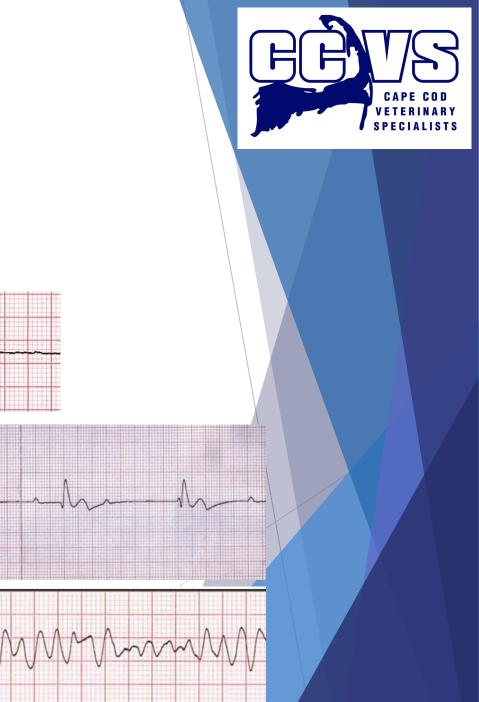
- ► Two primary tools for monitoring during CPR
 - ► ECG
 - ► End-tidal CO₂ monitor



https://www.heart.org/en/health-topics/heart-attack/diagnosing-a-heart-attack/electrocardiogram-ecg-or-ekg

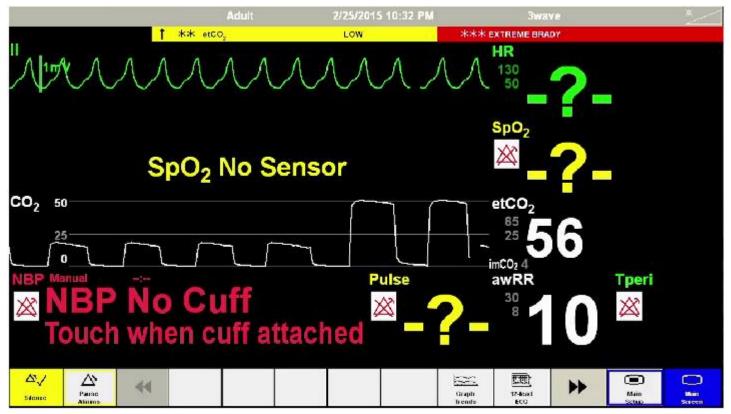
► ECG

- Can be placed while compressions are ongoing
- Ideally should avoid alcohol when trying to improve contact
 - ► Use electrode gel if possible
- Allows for rhythm assessment during pauses between 2minute cycles
 - Do not assess ECG during CPR



Most common arrest rhythms

► Asystole

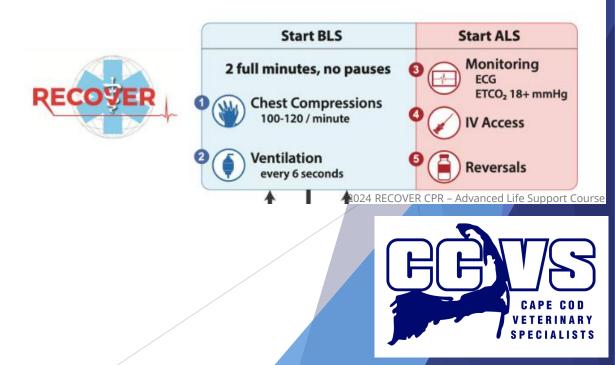

Pulseless electrical activity

Ventricular fibrillation

- ► End-tidal CO₂ monitor
 - ► Two main factors lead to ETCO₂ value
 - Minute ventilation
 - Amount of blood returning from the tissues to the lungs
 - Advantages of ETCO₂
 - Motion resistant
 - Can be placed immediately following intubation
 - ► Can be used to monitor chest compression quality
 - ► A sudden, substantial increase in ETCO₂ can indicate ROSC

2024 RECOVER CPR – Advanced Life Support Course

What about your other monitoring equipment?


► No!

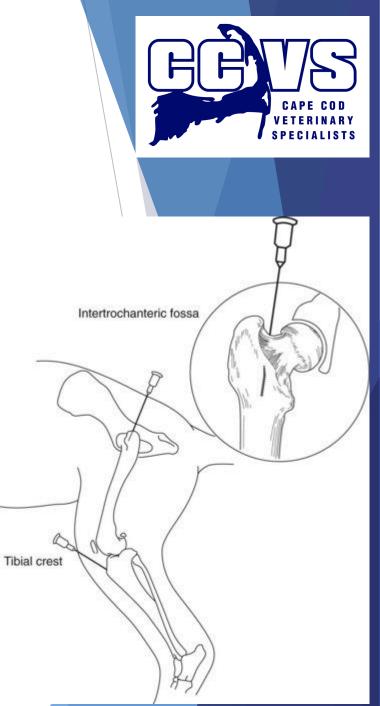
► All of these machines rely on pulsatile arterial blood flow

Intravenous Access

- Allows administration of reversals and rescue drugs
- If IV catheter already in place, prioritize using catheter closest to the heart

CPR Algorithm for Dogs and Cats

- Intravenous Access
 - Peripheral IV catheter placement
 - ► Cephalic vs. saphenous vs. external jugular
 - Bigger isn't better
 - Peripheral venous cutdown
 - ► Can be performed on cephalic, saphenous, or jugular
 - Lateral saphenous tends to be easiest (and most out of the way)


https://www.vip.com/apputil/project/Default/dv1.aspx?pld=24437&SAld=-1&catld=137399&id=9382712

Intravenous Access

- Intraosseous catheter
 - ► IO gun
 - 18G or 20G needle in puppies / kittens

https://todaysveterinarynurse.com/emergency-medicinecritical-care/uncommon-iv-catheter-sites-in-small-apimals

https://veteriankey.com/emergency-and-critical-care-issues/

- Intratracheal drug administration
 - Epinephrine, atropine, and vasopressin can be administered via endotracheal tube
 - ► NO sodium bicarbonate
 - Drugs are diluted with saline and administered down the tube using a red rubber catheter
 - Stopgap measure

CPR Dosing Chart for Dogs and Cats

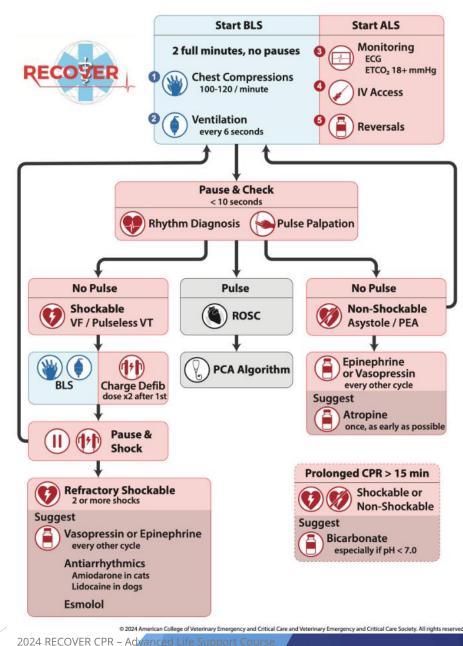
- ► Opioids → naloxone
- \blacktriangleright Benzodiazepines \rightarrow flumazenil
- ▶ α -2 agonists → atipamezole

In CPA situations, these medications
should be administered IV/IO, not
subcutaneously or intramuscularly

	1 14	Weight (kg)	2.5	5	10	15	20	25	30	35	40	45	50
	DRUG	DOSE	mL										
t	Epinephrine (1:1000; 1mg/mL)	0.01 mg/kg	0.03	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
Arrest	Vasopressin (20 U/mL)	0.8 U/kg	0.1	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
1	Atropine (0.4 - 0.54 mg/mL)	~ 0.05 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
mic	Amiodarone (50 mg/mL)	5 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
Anti- Arrhythmic	Lidocaine (20 mg/mL)	2 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
Arr	Esmolol* (10 mg/mL)	0.5 mg/kg	0.13	0.25	0.5	0.75	1	1.3	1.5	1.8	2	2.3	2.5
al	Naloxone (0.4 mg/mL)	0.04 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
Reversal	Flumazenil (0.1 mg/mL)	0.01 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
	Atipamezole (5 mg/mL)	100 µg/kg	0.06	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
Biphasic Defibrillation	External Defib (J)	2 - 4 J/kg	5 J	10 J	20 J	30 J	40 J	50 J	60 J	70 J	80 J	90 J	100 J
	Internal Defib (J)	0.2 - 0.4 J/kg	1 J	2 J	2 J	3 J	4 J	5 J	6 J	7 J	8 J	9 J	10 J
*Adminis or IO ove	ster esmolol 0.5 mg/kg IV er 3-5 minutes followed I at 50 mcg/kg/min	Weight (kg)	2.5	5	10	15	20	25	30	35	40	45	50

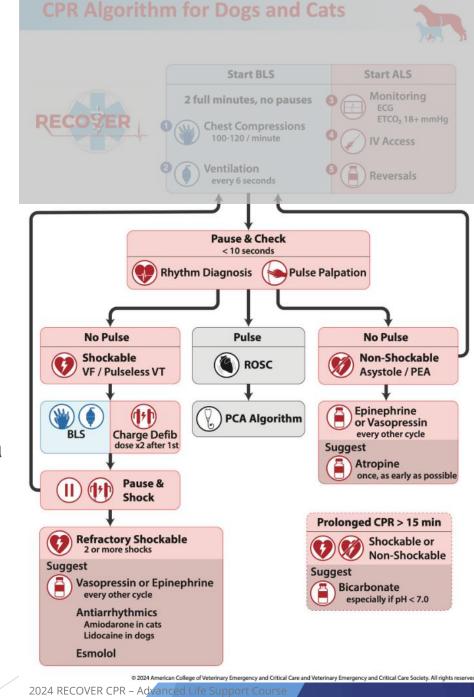
© 2024 American College of Veterinary Emergency and Critical Care and Veterinary Emergency & Critical Care Society. All rights reserv

CPR Algorithm for Dogs and Cats

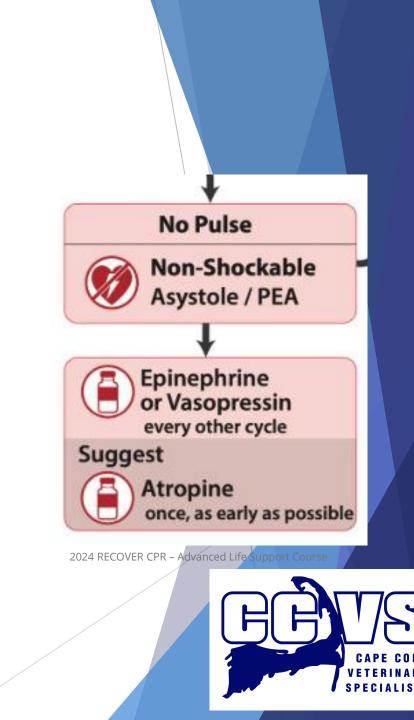

Advanced Life Support

We're executing high-quality BLS

► We've completed the first 3 steps of ALS


What's next?

- At the end of each 2-minute cycle, there should be a pause that lasts no more than 5-10 seconds
 - During this time:
 - One team member should feel for a pulse
 - The team should look at the ECG and determine a rhythm diagnosis



Vasopressors

- Recommended in ALL patients with non-shockable arrest rhythms
- Due to short half-lives, recommended that these medications are administered every 3-5 minutes
 - Every other 2-minute cycle

► Vasopressors increase aortic diastolic pressure → increases myocardial perfusion

- ► Vasopressors → epinephrine
 - ► Catecholamine
 - Normally produced by adrenal medulla
 - ► Works on α -1, β -1 and β -2 adrenergic receptors
 - α-1 peripheral vasoconstriction
 - \triangleright β -1 increase HR and strength of contractility
 - ► β -2 bronchodilation
 - ▶ Dose: 0.01 mg/kg IV/IO → 0.1 mL/10 kg body weight
 ▶ 0.02-0.1 mg/kg IT
 - ► High dose epinephrine no longer recommended

https://entirelypetspharmacy.com/epinephrine-injection-1-x6-1000sterile-multi-dose-vial-50ml.html

- ► Vasopressors → vasopressin
 - ► AKA: antidiuretic hormone
 - Normally synthesized in the hypothalamus
 - Acts on V₁ receptors causing marked vasoconstriction
 - Dose: 0.8 U/kg IV/IO
 - ► 4-8 U/kg IT
 - May be more efficacious than epinephrine in prolonged CPR or in patients with severe acidemia

https://eugiaus.com/products/vasopressin-injection-usp

- ► Parasympatholytics → atropine
 - Act to reduce overall parasympathetic tone (most commonly increased by the vagus nerve) in the body
 - Most useful in cases where high parasympathetic tone may have contributed to the arrest
 - Severe gastrointestinal disturbances (vomiting, diarrhea)
 - Diseases of the respiratory tract (coughing)
 - Ophthalmic manipulation
 - Dose: 0.04-0.054 mg/kg
 IT: 0.08 0.1 mg/kg

CPR Dosing Chart for Dogs and Cats

		1 14	Weight (kg)	2.5	5	10	15	20	25	30	35	40	45	50
		DRUG	DOSE	mL										
	t	Epinephrine (1:1000; 1mg/mL)	0.01 mg/kg	0.03	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
	Arres	Vasopressin (20 U/mL)	0.8 U/kg	0.1	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
tillation Reversal Anti- Arrest Arrest	Atropine (0.4 - 0.54 mg/mL)	~ 0.05 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	
	mic	Amiodarone (50 mg/mL)	5 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
Anti-	hyth	Lidocaine (20 mg/mL)	2 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
Biphasic Defibrillation Reversal Arrhythmic Arrhythmic	Esmolol* (10 mg/mL)	0.5 mg/kg	0.13	0.25	0.5	0.75	1	1.3	1.5	1.8	2	2.3	2.5	
	al	Naloxone (0.4 mg/mL)	0.04 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
	evers	Flumazenil (0.1 mg/mL)	0.01 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
		Atipamezole (5 mg/mL)	100 µg/kg	0.06	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	asıc Ilation	External Defib (J)	2 - 4 J/kg	5 J	10 J	20 J	30 J	40 J	50 J	60 J	70 J	80 J	90 J	100 J
Biphasic Defibrillation	Defibri	Internal Defib (J)	0.2 - 0.4 J/kg	1 J	2 J	2 J	3 J	4 J	5 J	6 J	7 J	8 J	9 J	10 J
*A	dminis	ster esmolol 0.5 mg/kg IV er 3-5 minutes followed	Weight (kg)	2.5	5	10	15	20	25	30	35	40	45	50

by a CRI at 50 mcg/kg/min

© 2024 American College of Veterinary Emergency and Critical Care and Veterinary Emergency & Critical Care Society. All rights reserved.

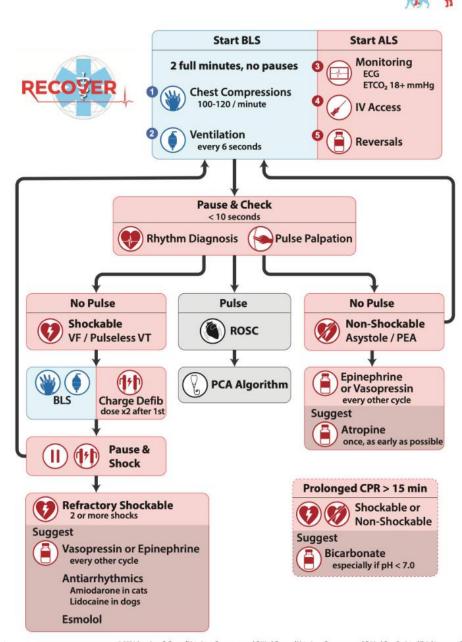
IV fluids

- Should only be given in cases where there is known or highly suspected hypovolemia
- Giving a fluid bolus to a euvolemic patient can be detrimental in CPR

https://www.heartlandvetsupply.com/p-5703-lactated-ringers-inj-usp_sp

Steroids

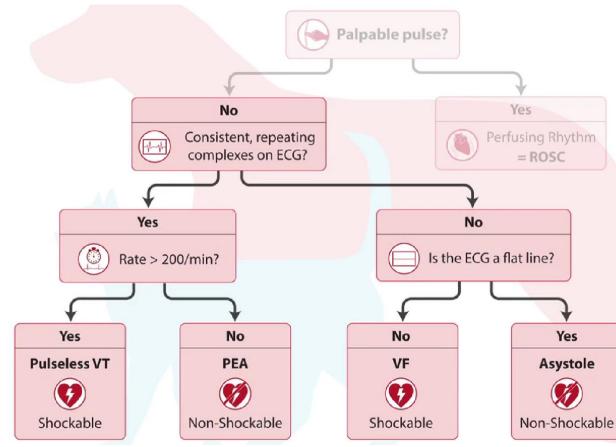
- Recommended to avoid steroids unless there is a clear indication
- Patients that may benefit from steroids during CPA
 - Arrest in association with anaphylaxis
 - Patients with known (or highly suspected) hypoadrenocorticism
 - ▶ Patients suspected to have CIRCI



Bicarbonate

- With prolonged CPR, severe acidemia can develop due to a build up of lactate and CO₂ in the body
- Thought that bicarbonate therapy may improve responsiveness of α-1 receptors by improving the blood pH
- Should only be given in prolonged CPA (>15 minutes) and ideally should have a blood gas identifying a pH <7.0</p>
- Dose: 1 mEq/kg IV or IO
 Not to be given IT

- ► In the event of non-shockable rhythm:
 - Continue to administer high-quality BLS in 2minute cycles
 - At the end of a 2-minute cycle, perform a short "pause & check"
 - Administer vasopressors every other 2-minute cycle
 - ► Every 3-5 minutes
 - ► This continues until:
 - ► ROSC is achieved
 - Resuscitation efforts are halted
 - ► A shockable rhythm is identified during the pause



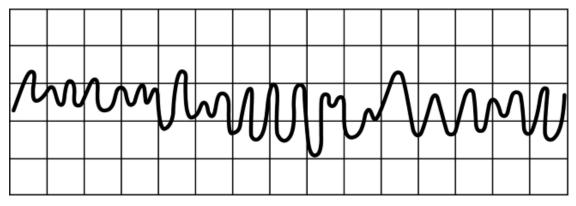
CPR Algorithm for Dogs and Cats

^{© 2024} American College of Veterinary Emergency and Critical Care and Veterinary Emergency and Critical Care Society. All rights reserve

Shockable rhythms

► How do we identify shockable rhythms?

Start BLS Start ALS Monitoring 2 full minutes, no pauses ETCO₂ 18+ mmHg Chest Compressions 100-120 / minute **IV** Access Reversals every 6 seconds **Pause & Check** < 10 seconds Rhythm Diagnosis Pulse Palpation No Pulse Pulse No Pulse G Shockable Non-Shockable ROSC VF / Pulseless VT Asystole / PEA Epinephrine (11) PCA Algorithm Charge Defib dose x2 after 1st Atropine Pause & Shock Prolonged CPR > 15 min 9 **Refractory Shockable** Shockable or 2 or more shocks Non-Shockable Suggest Vasopressin or Epinephrine Bicarbonate every other cycle Antiarrhythmics Amiodarone in cats Lidocaine in dogs Esmolol © 2024 American College of Veterinary Emergency and Critical Care and Veterinary Emergency and Critical Care Society. All rights reserved


2024 RECOVER CPR – Advanced Life Support Course

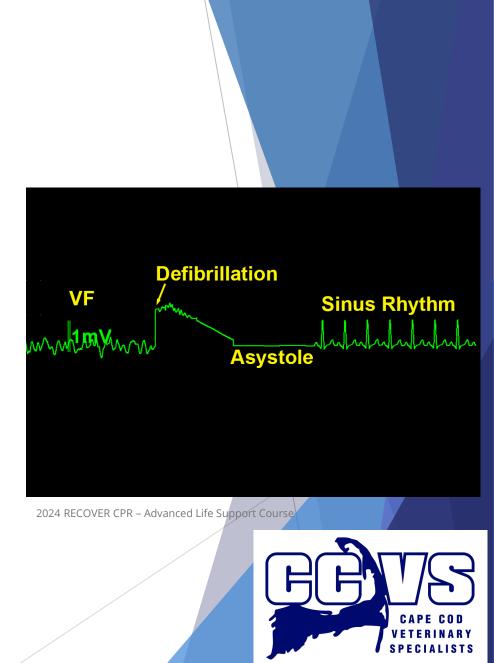
CPR Algorithm for Dogs and Cats

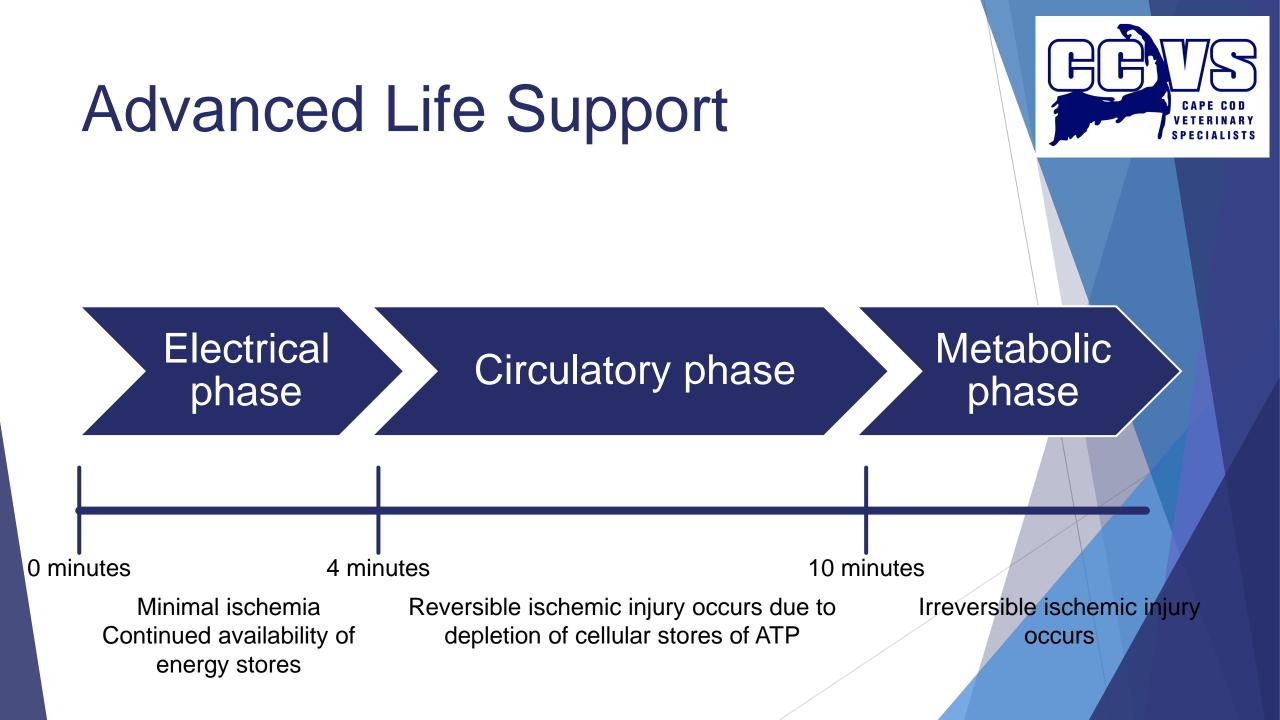
2024 RECOVER CPR – Advanced Life Support Course

Shockable rhythms

Ventricular fibrillation

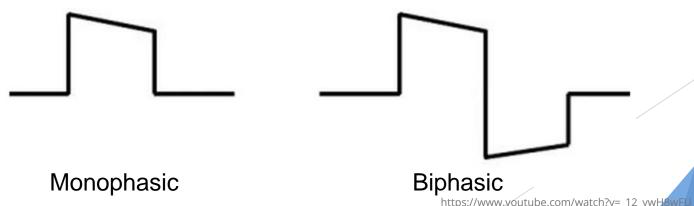
Pulseless ventricular tachycardia





https://www.mometrix.com/academy/pediatric-advanced-life-support/

Electrical defibrillation


- Goal is to simultaneously depolarize as many cells as possible, returning them to their refractory period, and stopping the ineffective contractions
- The hope is then that your typical pacemaker cells in the SA node will be able to takeover and return the heart to a normal sinus rhythm

- Defibrillator types

 - ▶ Biphasic → delivers electrical current in one direction, reverses polarity and deliver current again in opposite direction

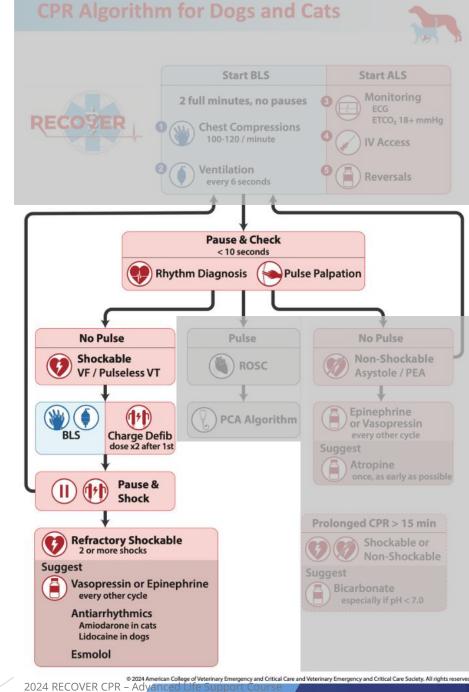
Defibrillator doses

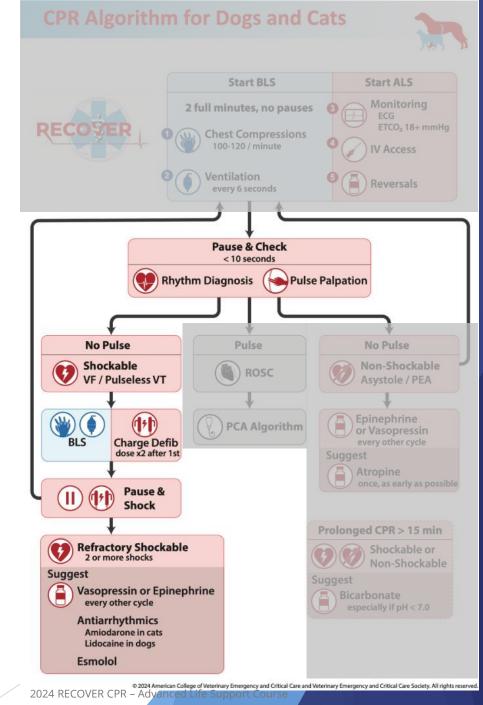
CPR Dosing Chart for Dogs and Cats

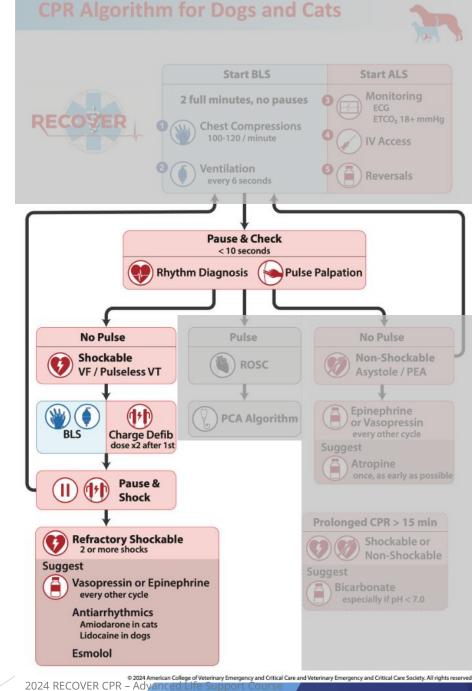
		Weight (kg)	2.5	5	10	15	20	25	30	35	40	45	50
Monophasic Defibrillation	External Defib (J)	4 - 6 J/kg	10 J	20 J	40 J	60 J	80 J	100 J	120 J	140 J	160 J	180 J	200 J
	Internal Defib (J)	0.5 - 1 J/kg	2 J	3 J	5 J	8 J	10 J	15 J	15 J	20 J	20	20 J	25 J
asic Ilation	External Defib (J)	2 - 4 J/kg	5 J	10 J	20 J	30 J	40 J	50 J	60 J	70 J	80 J	90 J	100 J
Biphasic Defibrillation	Internal Defib (J)	0.2 - 0.4 J/kg	1 J	2 J	2 J	3 J	4 J	5 J	6 J	7 J	8 J	9 J	10 J

2024 RECOVER CPR – Advanced Life Support Course

Electrical defibrillation


- Avoid use of alcohol on patient's skin
- If using hand paddles, patient should be in dorsal recumbency and paddles should be placed directly over the heart
- Press paddles firmly into the chest
- Ensure yourself and all other personnel have taken their hands off of the patient by stating "CLEAR" and by direct visualization
- Defibrillate the patient, lower them into lateral recumbency and continue BLS


2024 RECOVER CPR – Advanced Life Support Course


- ► In the event of a shockable rhythm:
 - Once the rhythm is identified, BLS should be restarted immediately while the defibrillator is readied
 - Dose: 2-4 J/kg (biphasic) or 4-6 J/kg (monophasic)
 - Once defibrillator is charged, get patient into position and defibrillate
 - Once defibrillation is complete, start a 2-minute cycle of BLS
 - At next "pause and check", assess ECG rhythm

- ► In the event of a shockable rhythm:
 - If a shockable rhythm is still present, restart BLS and double the defibrillator dose
 - Once defibrillator is charged, defibrillate patient and continue BLS
 - ► This continues until:
 - ► ROSC is achieved
 - Resuscitation efforts are halted
 - A non-shockable rhythm is identified during the pause

- Defibrillation should be performed every cycle if patient still has a shockable rhythm
- Once defibrillator dose has been doubled, we do not increase the dose further from there

Other considerations:

- ► Vasopressors
 - ► When to use:
 - Can be considered in refractory shockable rhythms
 - ► What to use:
 - Vasopressin (preferable)
 - ► Epinephrine

Other considerations:

- ► Antiarrhythmics
 - ► When to use:
 - Patients with refractory shockable rhythms
 - ► What to use
 - Lidocaine 2 mg/kg IV/IO
 - Amiodarone 5 mg/kg IV
 - Esmolol 0.5 mg/kg IV/IO

- Open Chest CPR (OCCPR)
 - In medium- and large-breed dogs, OCCPR is likely to produce better outcomes than closed chest CPR
 - ► Especially in the face of:
 - Pleural space disease
 - Pericardial effusion
 - Giant breed dogs
 - Diaphragmatic hernias
 - Patients undergoing abdominal or thoracic surgery

- Open Chest CPR (OCCPR)
 - Prep for a left-sided thoracotomy between the 4th and 5th rib space
 - Incise over the 4th intercostal space using a scalpel, then enter the chest cavity using Mayo scissors to incise through chest wall
 - Retract the ribs
 - Remove the pericardium
 - Directly massage the heart

- Open Chest CPR (OCCPR)
 - OCCPR should be started as soon as possible
 - Intensive post-ROSC care is necessary
 - ► Thoroughly flush the chest, close muscle and skin routinely
 - A chest tube should be placed to allow continued evacuation of the chest
 - Consider antibiotics
 - Post-operative analgesia

Other considerations:

Mechanical defibrillation (precordial thump)

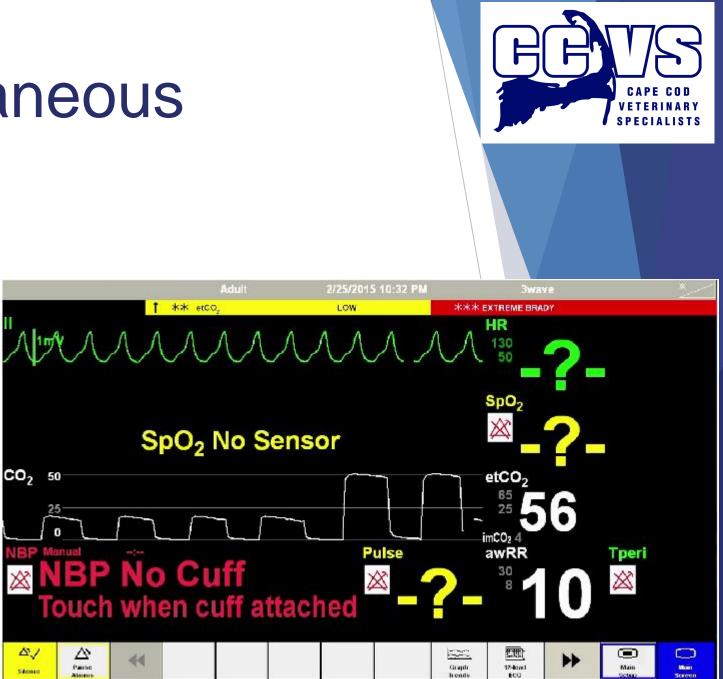
- Much less effective
- Should never be used in placed of an electrical defibrillator if one is available
- Strike directly over the heart
 - ▶ Medium to large breed dogs: as much force as possible
 - Small dogs and cats: take care not to hit too hard

Setting the team up for success
 Clear team leader

Closed-loop communication

Situation monitoring

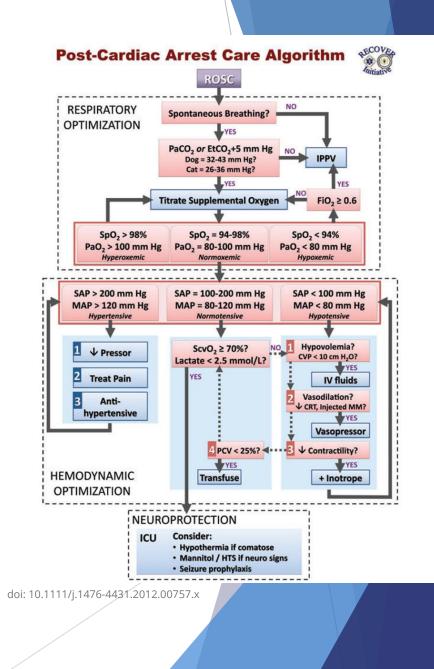
Mutual support



2024 RECOVER CPR – Advanced Life Support Course

Return of Spontaneous Circulation

- How do we know we got them back?
 - Palpable femoral pulse during "pause and check"
- Stopping a BLS cycle?
 - Only when a sudden, persistent increase in ETCO₂
 AND evidence of an arterial pulse that is distinct from chest compressions



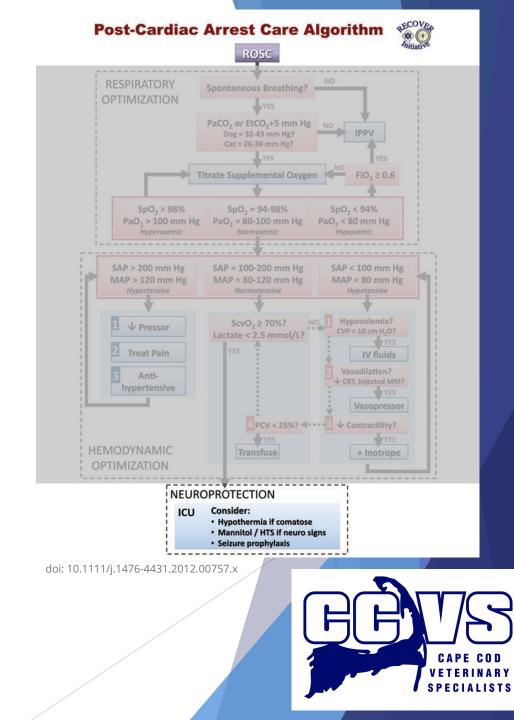
2024 RECOVER CPR – Advanced Life Support Course

Post-ROSC Care

► You got them back... now what?

- Our goal is to optimize care in this critical period
 - Respiratory optimization
 - Hemodynamic optimization
 - Neuroprotection
 - Referral

Post-ROSC Care


- Respiratory optimization
 - ► Is the patient spontaneously breathing?
 - ► If not, we need to provide ventilatory support
 - Aim for normocapnia
 - ETCO₂ of 32-43 mmHg in dogs and 26-36 mmHg in cats
 - Aim for patients to be normoxemic
 - Titrate our supplemental oxygen to avoid hyperoxemia and hypoxemia

RESPIRATORY OPTIMIZATION	PaCO ₂ or EtCO ₂ +5 mm Hg Dog = 32-43 mm Hg? Cat = 26-36 mm Hg?	NO IPPV	
	YES	YES	
Titrate Supplemental Oxygen FiO₂ ≥ 0.6			
SpO ₂ > 98% PaO ₂ > 100 mm Hg Hyperoxemic	SpO ₂ = 94-98% PaO ₂ = 80-100 mm Hg Normoxemic	SpO ₂ < 94% PaO ₂ < 80 mm Hg Hypoxemic	
SAP > 200 mm Hg MAP > 120 mm Hg Hypertensive 1 & Pressor 2 Treat Pain 3 Anti- hypertensive HEMODYNAMIC OPTIMIZATION	SAP = 100-200 mm Hg MAP = 80-120 mm Hg Normotensive ScvO ₂ ≥ 70%? Lactate < 2.5 mmol/L? YES 4 PCV < 25%? YES Transfuse PROTECTION Consider: • Hypothermia if comatos	+ Inotrope	
doi: 10.1111/j.1476-4431.2012.0	Mannitol / HTS if neuro s Seizure prophylaxis		
		55	CAPE COD Veterinar Specialist

Post-Cardiac Arrest Care Algorithm ROSC Spontaneous Breathing? PaCO, or EtCO,+5 mm Hg NO IPPV **Titrate Supplemental Oxygen** FiO₂ ≥ 0.6 SpO₂ > 98% SpO₂ = 94-98% SpO₂ < 94% PaO₂ > 100 mm Hg PaO₂ = 80-100 mm Hg PaO₂ < 80 mm Hg SAP = 100-200 mm Hg SAP < 100 mm Hg SAP > 200 mm Hg MAP > 120 mm Hg MAP = 80-120 mm Hg MAP < 80 mm Hg Hypertensive Hypotensive Hypovolemia? ScvO₂ ≥ 70%? ↓ Pressor CVP < 10 cm H2O? Lactate < 2.5 mmol/L? YES 2 **Treat Pain** YES **IV fluids** Vasodilation? Anti-CRT, Injected MM? hypertensive YES Vasopressor PCV < 25%? YES YES **HEMODYNAMIC** Transfuse + Inotrope **OPTIMIZATION** doi: 10.1111/j.1476-4431.2012.00757.x CAPE COD

Post-ROSC Care

- Hemodynamic optimization
 - Assessing blood pressure, aiming for normotension
 - ► If patient is hypotensive, consider:
 - ► Fluid bolus
 - Vasopressor therapy
 - Positive inotropes
 - ► If patient is hypertensive, consider:
 - Decreasing pressor therapy
 - Pain medications
 - Anti-hypertensives

Post-ROSC Care

- Neuroprotection
 - ► Hypothermia
 - ► Slow rewarming (0.25-0.5°C/h)
 - Hyperosmotic therapy
 - ► Hypertonic saline or mannitol
 - Seizure prophylaxis

Debriefing

- ► This is an opportunity to discuss the code as a whole
 - ► What went well?
 - ► What could have gone better?
 - ► What changes can we make to improve?
- Should be led by the team leader
 - Open-ended questions
- Important to ensure the team is in an appropriate mindset for this

Application

- Preparedness
 - Didactic training online or in-person RECOVER course
 - ► Hands-on practice
 - Centrally located crash cart
 - Emergency drugs
 - Ambu bag + ET tubes
 - ► ETCO₂ monitor
 - Cognitive aids
 - Debriefing

RE

References

- Boller M, Fletcher DJ. RECOVER evidence and knowledge gap analysis on veterinary CPR. Part 1: Evidence analysis and consensus process: collaborative path toward small animal CPR guidelines. J Vet Emerg Crit Care. 2012; 22(s1): S4-S12. doi: 10.1111/j.1476-4431.2012.00758.x
- Brainard BM, Lane SL, Burkitt-Creedon JM, et al. 2024 RECOVER Guidelines: Monitoring. Evidence and knowledge gap analysis with treatment recommendations for small animal CPR. J Vet Emerg Crit Care. 2024; 34(s1):76-103. doi: 10.1111/vec.13390
- Burkitt-Creedon JM, Boller M, Fletcher DJ, et al. 2024 RECOVER Guidelines: Updated treatment recommendations for CPR in dogs and cats. J Vet Emerg Crit Care. 2024; 34(s1): 104-123. doi: 10.1111/vec.13391
- Cuzzo B, Padala SA, Lappin SL. Physiology, Vasopressin. [Updated 2023 Aug 14]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/sites/books/NBK526069/
- Fletcher DJ, Boller M. Cardiopulmonary resuscitation. In: Silverstein D, Hopper K, eds. Small Animal Critical Care Medicine. 2nd ed. Elsevier; 2014:11-17.
- Fletcher DJ, Boller M. Cardiopulmonary resuscitation. In: Silverstein D, Hopper K, eds. Small Animal Critical Care Medicine. 3rd ed. Elsevier; 2022:21-29.
- Fletcher DJ, Boller M, Brainard BM, et al. RECOVER evidence and knowledge gap analysis on veterinary CPR. Part 7: clinical guidelines. J Vet Emerg Crit Care. 2012; 22(s1): S102-S131. doi:10.1111/j.1476-4431.2012.00757.x

References

- Girotra S, Nallamothu BK, Spertus JA, et al: Trends in survival after in-hospital cardiac arrest N Engl J Med 20, 2012;367: 1912-1920 Available at: http://www.nejm.org/doi/abs/10.1056/NEJMoa1109148. PMID: 23150959
- Hofmeister EH, Brainard BM, Egger CM, et al. Prognostic indicators for dogs and cats with cardiopulmonary arrest treated by cardiopulmonary cerebral resuscitation at a university teaching hospital. J Am Vet Med Assoc 2009; 235(1): 50–57.
- RECOVER. 2024 RECOVER CPR Advanced Life Support. 2024. Accessed December 17, 2024. https://learning.acvecc.org/topclass/contentSetup.do?CnTxT=14191386&tc_student_id=141913 86&item=11061324&view=1
- RECOVER. 2024 RECOVER CPR Basic Life Support. 2024. Accessed December 8, 2024. https://learning.acvecc.org/topclass/topclass.do?CnTxT-14191378-contentSetuptc_student_id=14191378-item=11055613&view=1
- Silverstein D, Hopper K. Small Animal Critical Care Medicine. 3rd ed. Elsevier; 2022.
- Smarick SD, Haskins SC, Boller M, et al. RECOVER evidence and knowledge gap analysis on veterinary CPR. Part 6: Post-cardiac arrest care. J Vet Emerg Crit Care. 2012; 22(s1): S85-S101. doi:10.1111/j.1476-4431.2012.00754.x

QUESTIONS?

NOTICE

CE credit certificates & presentation slides will be emailed to you. If you do not receive an email with this information within a week, contact Nichole nicholemanfredi@capecodvetspecialists.com

